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GRAPHS WHOSE VERTEX SET
CAN BE PARTITIONED

INTO A TOTAL DOMINATING SET
AND AN INDEPENDENT DOMINATING SET

Teresa W. Haynes and Michael A. Henning

Communicated by Dalibor Fronček

Abstract. A graph G whose vertex set can be partitioned into a total dominating set
and an independent dominating set is called a TI-graph. We give constructions that
yield infinite families of graphs that are TI-graphs, as well as constructions that yield
infinite families of graphs that are not TI-graphs. We study regular graphs that are
TI-graphs. Among other results, we prove that all toroidal graphs are TI-graphs.
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1. INTRODUCTION

A classic 1962 result by Ore [21] shows that for any isolate-free graph G, the vertices of
G can be partitioned into two dominating sets. However, this result does not necessarily
extend to other types of domination. For example, although the vertices of the 4-cycle
can be partitioned into two (total) dominating sets, they cannot be partitioned into
an independent dominating set and a total dominating set. Further, the vertices of
a 5-cycle cannot be partitioned into two total dominating sets or even into a total
dominating set and a (independent) dominating set. On the other hand, Henning and
Southey [16] showed that if G is a connected graph with minimum degree at least 2
and G is not the 5-cycle, then the vertex set of G can be partitioned into a total
dominating set and a dominating set. Hence, a natural problem is to consider which
graphs can be partitioned into two specific types of dominating sets. Such problems
have been studied in [2, 4–6, 8, 12–17, 20, 23, 24] and elsewhere. In this paper we
study graphs whose vertex set can be partitioned into a total dominating set and an
independent dominating set.

We begin with some basic definitions. For an integer k ≥ 1, let [k] = {1, 2, . . . , k}.
Let G be a graph with vertex set V = V (G), edge set E = E(G). The open neighborhood
NG(v) of a vertex v ∈ V is the set of vertices adjacent to v, and its closed neighborhood is
NG[v] = NG(v) ∪ {v}. The open neighborhood of a set S ⊆ V is NG(S) =

⋃
v∈S NG(v),
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while the closed neighborhood of a set S ⊆ V is the set NG[S] =
⋃

v∈S NG[v]. Two
vertices are neighbors if they are adjacent. The degree of a vertex v is degG(v) = |NG(v)|.
The minimum and maximum degrees of a vertex in a graph G are denoted δ(G) and
∆(G), respectively. An isolated vertex in G is a vertex of degree 0 in G. An isolate-free
graph is a graph which contains no isolated vertex. A trivial graph is the graph of
order 1, and a nontrivial graph has order at least 2. If G is clear from the context,
then we will use N(v), N [v], N [S], N(S) and deg(v) in place of NG(v), NG[v], NG[S],
NG(S) and degG(v), respectively. Let Pn denote the path on n vertices and Cn denote
the cycle on n vertices.

The subgraph of G induced by a set S ⊆ V is denoted by G[S]. A set S is
a dominating set of a graph G if N [S] = V , that is, every vertex in V \ S is adjacent
to at least one vertex in S. The minimum cardinality of a dominating set in a graph
G is the domination number of G and is denoted by γ(G). A dominating set S is
a total dominating set, abbreviated TD-set, of an isolate-free graph G if G[S] has
no isolated vertices, that is, N(S) = V . If X and Y are sets of vertices in G, where
possibly X = Y , then the set X totally dominates the set Y if every vertex in Y has
a neighbor in X. A dominating set S is an independent dominating set, abbreviated
ID-set, of G if S is an independent set in G, that is, G[S] consists of isolated vertices.
The independent domination number i(G) is the minimum cardinality of a ID-set of
G and an ID-set of cardinality i(G) is called an i-set of G. For other graph theory
terminology not defined herein, the reader is referred to [11], and for other recent
books on domination in graphs, we refer the reader to [9, 10, 19].

Here we consider graphs whose vertex sets can be partitioned into a TD-set and
an ID-set, and we refer to such a partition as a TDID-partition of G. If G has
a TDID-partition, then we say that G is a TI -graph. We note that since any maximal
independent set is also a minimal dominating set, Ore’s result [21] also implies that the
vertices of any isolate-free graph G can be partitioned into an ID-set and a dominating
set. However, not all graphs have a TDID-partition as can be easily seen with the
cycle C5 and the path P5. We remark that if a graph G is a TI-graph, then every
TD-set of G contains at least two vertices from every component of G and every ID-set
of G contains at least one vertex from every component of G, implying that every
component of G has order at least 3. In particular, if G is connected, then G has
order at least 3.

We present some basic results in Section 2 followed by methods of constructing
TI-graphs in Section 3. We then turn our attention to regular graphs in Section 4
and focus on two infinite families of regular graphs in the final two sections, namely
toroidal graphs in Section 5 and cubic graphs in Section 6.

2. PRELIMINARY RESULTS

It remains an open problem to characterize TI-graphs. We present in this section some
preliminary results. We begin with an example. The k-corona H ◦ Pk of a graph H is
the graph of order (k + 1)|V (H)| obtained from H by attaching a path of length k
to each vertex of H so that the resulting paths are vertex-disjoint. For example, the
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4-corona C5 ◦ P4 of a 5-cycle is illustrated in Figure 1. We note that every TD-set of
the k-corona H ◦ Pk of a graph H contains all support vertices of H ◦ Pk. Moreover, in
order to totally dominate the support vertices, every TD-set also contains a neighbor of
each support vertex. Thus, if H ◦ Pk has a TDID-partition {I, T} where I is an ID-set
and T is a TD-set, then every leaf is in I in order to be dominated by I and a unique
partition is forced. For instance, a TDID-partition {I, T} of the 4-corona C5 ◦ P4 is
shown Figure 1, where the shaded vertices are in I and the white vertices are in T .

Fig. 1. A TDID-partition of the 4-corona C5 ◦ P4 of a 5-cycle

This leads to the following observation.

Proposition 2.1. If H is an isolate-free graph, then the k-corona H ◦Pk is a TI-graph
if and only if k ≡ 1 (mod 3).

We observe next that a graph in which every vertex belongs to a triangle is
a TI-graph.

Proposition 2.2. A graph in which every vertex belongs to a triangle is a TI-graph.

Proof. Let G be a graph in which every vertex belongs to a triangle. Let I be an
arbitrary maximal independent set in G, and let T = V \ I. Thus, I is an ID-set of
G. Let v be a vertex in T . Let Tv be a triangle that contains the vertex v, and let
V (Tv) = {v, v1, v2}. Since v1 and v2 are adjacent vertices, at most one of v1 and v2
belongs to the independent set I, implying that the vertex v has at least one neighbor
in T . Thus, the subgraph of G induced by the set T is isolate-free. Moreover since
every vertex belongs to a triangle, every vertex in I has at least two neighbors in T ,
and so T is a dominating set. Thus, T is a TD-set of G, implying that the resulting
sets I and T form a TDID-partition of G.

As a consequence of Proposition 2.2, the following families of graphs are TI-graphs.

Corollary 2.3. The following families of graphs are TI-graphs.

(a) Maximal outerplanar graphs.
(b) Claw-free graphs with minimum degree at least 3.
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An efficient dominating set S ⊆ V in a graph G = (V, E) is a dominating set
with the additional property that the closed neighborhood N [v] of every vertex v ∈ V
contains exactly one vertex in S.
Proposition 2.4. If G is a graph with δ(G) ≥ 2 and G has an efficient dominating
set, then G is a TI-graph.
Proof. Let G be a graph with δ(G) ≥ 2 and an efficient dominating set I. We note
that I is an ID-set of G such that every pair of vertices in I are distance at least 3
apart. Let T = V \ I. Since every vertex in I has at least two neighbors in T , the
set T is a dominating set of G. Further, since δ(G) ≥ 2 and no vertex of T has two
neighbors in I, it follows that the induced subgraph G[T ] is isolate-free, that is, T is
a TD-set of G. Hence, G is a TI-graph.

A graph G is idomatic if V has a partition π = {V1, . . . , Vk} in which every subset
Vi is an ID-set for all i ∈ [k]. Such a partition π is called an independent domatic
partition of G. Thus, an independent domatic partition of G is a collection of ID-sets
and is also a proper coloring of the vertices of G. The idomatic number, denoted
idom(G), equals the maximum order of an independent domatic partition of G. If
a graph G does not have an independent domatic partition, then we define idom(G) = 0.
Proposition 2.5. Every graph G with idom(G) ≥ 3 is a TI-graph.
Proof. Let G be a graph with idom(G) ≥ 3, and let π = {V1, V2, . . . , Vidom(G)} be
a partition of V into idom(G) ID-sets of G. The requirement that idom(G) ≥ 3
guarantees that the set V \ Vi is a TD-set of G for all i ∈ [idom(G)]. Hence, the sets
Vi and V \ Vi form a TDID-partition of G for all i ∈ [idom(G)].

As a consequence of Proposition 2.5, every complete k-partite graph where k ≥ 3
is a TI-graph.
Corollary 2.6. Every complete k-partite graph Kn1,n2,...,nk

where k ≥ 3 is a TI-graph.

3. CONSTRUCTING TI-GRAPHS

In this section, we present methods to construct a TI-graph from two smaller TI-graphs.
We also observe that the union G ∪ H of two graphs G and H is a TI-graph if and
only if G and H are TI-graphs. The join of two graphs G and H, denoted G ⊕ H,
is constructed from their disjoint union by adding edges making every vertex in G
adjacent to every vertex in H. If at least one of G and H is isolate-free, then the join
G ⊕ H is a TI-graph. To see this, suppose that G is an isolate-free graph and consider
the join G ⊕ H for any graph H. Any ID-set of G is also an ID-set of G ⊕ H. Further,
since V (G) \ I ≠ ∅, every vertex in G ⊕ H has neighbor in V (G ⊕ H) \ I, that is,
V (G ⊕ H) \ I is a TD-set of G ⊕ H. We state this formally as follows.
Proposition 3.1. If G and H are two graphs, then the following properties hold.
(a) The union G ∪ H is a TI-graph if and only if G and H are TI-graphs.
(b) If at least one of G and H is isolate-free, then the join G ⊕ H is a TI-graph.
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Let Gi be a graph having a TDID-partition {Ii, Ti} where Ii is an ID-set of Gi and
Ti is a TD-set of Gi for i ∈ [2]. We build a larger TI-graph G from G1 ∪G2 by applying
one of the three operations O1, O2 and O3 as shown in Figures 2, 3, and 4, respectively.
In these figures, the vertices of Ti are white and the vertices of Ii are shaded. Beginning
with G1 ∪ G2, the operations build a graph G having a TDID-partition {I, T}, where
I is an ID-set and T is a TD-set and where (as shown in Figures 2–4) the shaded
vertices belong to the set I and the white vertices to the set T .

– Operation O1. Add edge uv where vertex u ∈ T1 and vertex v ∈ T2. Let I = I1∪I2
and T = T1 ∪ T2.

T1

I1

T2

I2

G1

O1:
u v

G2

Fig. 2. The operation O1

– Operation O2. Add a path xy and the edges xu and yv where vertex u ∈ I1 and
vertex v ∈ I2. Let I = I1 ∪ I2 and T = (T1 ∪ T2) ∪ {x, y}.

T1

I1

T2

I2

O2:

G1 G2
x y

u v

Fig. 3. The operation O2

– Operation O3. Add a path xyz and the edges ux and vz where u ∈ I1 and v ∈ T2.
Let I = (I1 ∪ I2) ∪ {z} and T = (T1 ∪ T2) ∪ {x, y}.

T1

I1

T2

I2

O3:

G1 G2
x

y

z

u

v

Fig. 4. The operation O3

We note that {I, T} is a TDID-partition for the graphs G constructed by operations
O1, O2, and O3. Hence, in each case G is a TI-graph.
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4. REGULAR GRAPHS

As observed earlier, no 1-regular graph is a TI-graph. The connected 2-regular TI-graphs
were determined in [4].

Proposition 4.1 ([4]). A cycle Cn is a TI-graph if and only if n ≡ 0 (mod 3).

In this section, we consider r-regular graphs where r ≥ 3. Since the only ID-set
of a complete bipartite graph Kp,q, for 1 ≤ p ≤ q, is one of its partite sets and the
remaining partite set is not a TD-set, the graph Kp,q is not a TI-graph. In particular,
the graph Kr,r is not a TI-graph.

We begin with a simple operation R on a TI-graph G′ to build another TI-graph G.
Although the operation works in general graphs, we note that in particular if G′ is an
r-regular TI-graph, then the regularity of G′ can be preserved in G using operation
R by adding the complete graph Kr+1 minus an edge. Let Kk − e denote a complete
graph on k vertices minus an edge e. Let {I ′, T ′} be an TDID-partition of the vertices
of G′ where I ′ is an ID-set of G′ and T ′ is a TD-set of G′.

Operation R. Let uv ∈ E(G′). Replace u′v′ with a complete graph Kk − u′v′

where u′v′ is an edge in Kk and k ≥ 3. Add edges uu′ and vv′ to form graph G.
See Figure 5.

(a) If u ∈ T ′ and v ∈ T ′, then let I = I ′ ∪ {x} where x is any vertex of the added
Kk − u′v′ except u′ and v′, and let T = V (G) \ I.

(b) If u ∈ T ′ and v ∈ I ′, then let I = I ′ ∪ {u′} and T = V (G) \ I.

G′

v

u

G
(a)

7→
u′

v′

G′
u

v

G′

v

u

G
(b)

7→
u′

v′

G′
u

v

Fig. 5. Illustration of operation R when k = 4

Note that {I, T} is a TDID-partition for the graphs G constructed by operation R,
and so G is a TI-graph.
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Next we construct an infinite family of r-regular TI-graphs. For r ≥ 3 and k ≥ 1, let
Nregular be the family of r-regular graphs Nr,k constructed as follows. Let H1, . . . , Hk be
k vertex disjoint copies of Kr,r − e where Hi has partite sets Xi = {xi,1, xi,2, . . . , xi,r}
and Yi = {yi,1, yi,2, . . . , yi,r} and where the missing edge e in Hi is the edge xi,1yi,1
for i ∈ [k]. Let Nr,k be the obtained from the disjoint union of the graphs H1, . . . , Hk

by adding the edges xi,1yi+1,1 where addition is taken modulo k. We note that
N2,1 = K2,2 = C4 and Nr,1 = Kr,r. When r = 4 and k = 3 the graph N4,3, for
example, in the family Nregular is illustrated in Figure 6, where the shaded vertices
belong to the set I and the white vertices to the set T . We remark that repeating this
pattern for each three consecutive copies Hj , Hj+1, and Hj+2, results in sets I and T
such that {I, T} is TDID-partition of G. We state this formally as follows.

Proposition 4.2. For r ≥ 3 and k ≥ 3 and k ≡ 0 (mod 3), the graph Nr,k ∈ Nregular
is an r-regular TI-graph.

y1,1

x1,4

x1,3

x1,2

y1,4

y1,3

y1,2

x1,1 y2,1

x2,4

x2,3

x2,2

y2,4

y2,3

y2,2

x2,1 y3,1

x3,4

x3,3

x3,2

y3,4

y3,3

y3,2

x3,1

Fig. 6. A TDID-partition of the 4-regular graph N4,3

We show next that for r ≥ 3, if k ≥ 1 and k ̸≡ 0 (mod 3), then the graph
Nr,k ∈ Nregular is not a TI-graph.

Proposition 4.3. For r ≥ 2 and k mod 3 ∈ {1, 2}, the graph Nr,k ∈ Nregular is not
a TI-graph.

Proof. Let Nr,k be a graph in the family Nregular for some k ≥ 1 where k mod 3 ∈ {1, 2}.
If k = 1, then the graph Nr,1 is the graph Kr,r, which as observed earlier is not
a TI-graph. Hence, we may assume that k ≥ 2 (and k mod 3 ∈ {1, 2}). Recall that
Hi has partite sets Xi = {xi,1, xi,2, . . . , xi,r} and Yi = {yi,1, yi,2, . . . , yi,r} and where
the missing edge e in Hi is the edge xi,1yi,1 for i ∈ [k]. Let X ′

i = Xi \ {xi,1} and let
Y ′

i = Yi \ {yi,1}. We note that if x ∈ I for some x ∈ X ′
i, then since all neighbors of x

belong to the set T and since every two vertices in X ′
i have the same neighborhood,

we infer that X ′
i ⊆ I in order for the set I to dominate the vertices in X ′

i. Analogously,
if y ∈ I for some y ∈ Y ′

i , then Y ′
i ⊆ T . It follows that if x ∈ T for some x ∈ X ′

i, then
X ′

i ⊆ T and that if y ∈ T for some y ∈ Y ′
i , then Y ′

i ⊆ T . Throughout the proof we
take addition modulo k. Suppose, to the contrary, that G contains a TDID-partition
{I, T} where I is an ID-set of G and T is a TD-set of G.
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We show firstly that at most one of xi,1 and yi+1,1 belongs to T for all i ∈ [k].
Suppose, to the contrary, that xi,1 ∈ T and yi+1,1 ∈ T for some i ∈ [k]. For notational
convenience, we may assume that x1,1 ∈ T and y2,1 ∈ T . Renaming vertices if necessary,
we may assume that y1,2 ∈ I in order to dominate the vertex x1,1, and x2,2 ∈ I in order
to dominate the vertex y2,1. Thus, by our earlier observations, Y ′

1 ⊆ I and X ′
2 ⊆ I,

implying that X ′
1 ⊆ T and Y ′

2 ⊆ T . This in turn implies that y1,1 ∈ T in order for
the set T to totally dominate the vertices in X ′

1, and x2,1 ∈ T in order for the set T
to totally dominate the vertices in Y ′

2 . Thus, y3,1 ∈ I in order for I to dominate the
vertex x2,1. This in turn implies that X ′

3 ∪ Y ′
3 ⊂ T and x3,1 ∈ I. In the special case

when r = 3, we illustrate these sets in the graph shown in Figure 7 which is a subgraph
of G = N3,k, where the shaded vertices belong to the set I and the white vertices
to the set T . The sets I and T are now determined, noting that this pattern repeats
itself. From this we infer that necessarily k ≡ 0 (mod 3), contradicting our supposition
that k mod 3 ∈ {1, 2}.

y1,1

x1,3

x1,2

y1,3

y1,2

x1,1 y2,1

x2,3

x2,2

y2,3

y2,2

x2,1 y3,1

x3,3

x3,2

y3,3

y3,2

x3,1

Fig. 7. The subgraph of N3,k in the proof of Proposition 4.3

Hence, at most one of xi,1 and yi+1,1 belongs to T for all i ∈ [k]. Since the ID-set I
contains at most one of xi,1 and yi+1,1 for all i ∈ [k], we observe that exactly one of
xi,1 and yi+1,1 belongs to set I and the other to the set T . For notional convenience
and by symmetry, we may assume that x1,1 ∈ I. Thus, N(x1,1) = Y ′

1 ∪ {y2,1} ⊆ T .
In order to totally dominate the neighbors of x1,1, we may assume renaming vertices
if necessary, that {x1,2, x2,2} ⊂ T . From our previous comments, X ′

1 ∪ X ′
2 ⊆ T . Hence,

y1,1 ∈ I in order to dominate the vertex x1,2, and the set I contains at least one
vertex in Y ′

2 in order to dominate the vertex x2,2, implying by our earlier observations
that Y ′

2 ⊂ I. This in turn implies that x2,1 ∈ T and so X2 ⊂ T . In order to totally
dominate the vertex x2,1, we have y3,1 ∈ T . We now infer that X ′

3 ⊂ I and Y ′
3 ⊂ T .

This in turn yields x3,1 ∈ T . In the special case when r = 3, we illustrate these sets
in the graph shown in Figure 8 which is a subgraph of G = N3,k, where the shaded
vertices belong to the set I and the white vertices to the set T .

y1,1

x1,3

x1,2

y1,3

y1,2

x1,1 y2,1

x2,3

x2,2

y2,3

y2,2

x2,1 y3,1

x3,3

x3,2

y3,3

y3,2

x3,1

Fig. 8. The subgraph of N3,k in the proof of Proposition 4.3

The sets I and T are now determined, noting that this pattern repeats itself.
Therefore, k ≡ 0 (mod 3), contradicting our supposition that k mod 3 ∈ {1, 2}.
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As a consequence of Propositions 4.2 and 4.3, we have the following result.

Proposition 4.4. For r ≥ 2 and k ≥ 1, the graph Nr,k ∈ Nregular is a TI-graph if
and only if k ≥ 3 and k ≡ 0 (mod 3).

Next we give a sufficient condition for a connected r-regular graph to be a TI-graph.
A graph is C4-free if it contains no induced 4-cycle.

Theorem 4.5. For r ≥ 3, if G is connected, r-regular graph that is C4-free and
satisfies i(G) ≤ r, then G is a TI-graph.

Proof. For r ≥ 3, let G be a connected r-regular graph that is C4-free and satisfies
i(G) ≤ r. Let I be an i-set of G. By the regularity of G, every vertex in I has r
neighbors in V \ I, and so V \ I is a dominating set of G. If V \ I is a TD-set of G, then
{I, V \ I} is a TDID-partition of G. Hence, we may assume that V \ I is not a TD-set
of G, for otherwise the desired result follows. Thus, there exists a vertex x ∈ V \ I
such that N(x) ⊆ I. This implies that r ≥ i(G) = |I| ≥ |N(x)| = r. Consequently,
I = N(x) and |I| = r.

Let N(x) = {x1, x2, . . . , xr}. Now each vertex xi has exactly r neighbors in V \ I
for all i ∈ [r]. For i ∈ [r], let Xi = N(xi) \ {x} and let X = ∪r

i=1Xi. Since I is an
ID-set of G and I = N(x), every vertex in X belongs to one of the sets Xi for some
i ∈ [r]. Since G contains no induced 4-cycle, Xi ∩ Xj = ∅ for all i, j ∈ [r] and i ̸= j.
Thus, the sets {X1, X2, . . . , Xr} partition the set X and the sets {I, X, {x}} partition
the set V . In particular, V = I ∪ X ∪ {x}. Further, |Xi| = r − 1 and for all i ∈ [r].
Since every vertex in X belongs to exactly one of the sets Xi for i ∈ [r] and is therefore
adjacent to exactly one vertex that belongs to the set I, we note that the subgraph
GX = G[X] induced by the set X is an (r − 1)-regular graph.

Let IX be an i-set of GX . Suppose that |IX ∩ Xi| ≤ r − 2 for all i ∈ [r]. In this
case, we consider the set I∗ = IX ∪ {x}. Every vertex in I has at least one neighbor
that belongs to X \ IX , and therefore has at least one neighbor in V \ I∗. As observed
earlier, every vertex in X has a neighbor in I. In particular, every vertex in X \ I∗ has
a neighbor in I, and therefore has at least one neighbor in V \ I∗. Hence, G[V \ I∗] is
an isolate-free graph. Moreover, V \ I∗ dominates the graph G, implying that V \ I∗

is a TD-set of G. Thus, {I∗, V \ I∗} is a TDID-partition of G.
Hence, we may assume that |IX ∩ Xi| ≥ r − 1 for some i ∈ [r]. Since |Xj | = r − 1

for all j ∈ [r], we infer that Xi ⊆ IX . Renaming sets if necessary, we may assume that
i = 1, that is, X1 ⊆ IX . Hence, X1 is an independent set. Therefore, each vertex in
X1 has r − 1 neighbors in X \ X1. Thus, there are exactly (r − 1)|X1| = (r − 1)(r − 1)
edges between the vertices of X1 and the vertices of X \ X1. Since G is C4-free and X1
is an independent set, every vertex in Xi is adjacent to at most one vertex in X1 for
all i ∈ [r] \ {1}. Thus, there are at most (r − 1)(r − 1) edges between the vertices of X1
and the vertices of X \ X1, implying that each vertex in Xi is adjacent to exactly one
vertex in X1 for all i ∈ [r] \ {1}. As observed earlier, GX is an (r − 1)-regular graph.
Hence, every vertex in X1 is adjacent to exactly one vertex in Xi for all i ∈ [r] \ {1}.
From these observations, we infer that the edges between the sets X1 and Xi induce
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a perfect matching for all i ∈ [r] \ {1}. This implies that X1 is an ID-set of GX and so
X1 = IX . We now consider the set

I∗ = IX ∪ (I \ {x1}).

By our earlier observations, the set I∗ is an ID-set of G. Moreover, since r ≥ 3,
every vertex in X \IX has r−2 ≥ 1 neighbors in X \IX . We also note that x and x1 are
adjacent vertices that belong to the set V \ I∗. Therefore, the set V \ I∗ is isolate-free.
By our earlier observations, the set V \ I∗ is a dominating set of G, implying that
V \ I∗ is a TD-set of G. Thus, {I∗, V \ I∗} is a TDID-partition of G.

As an illustration of our proof in Theorem 4.5, consider the Petersen graph
G = P (5, 2) with the vertices named as in Figure 9. Adopting the notation in
Theorem 4.5, the set I = {x1, x2, x3} is an i-set of G such that I = N(x). As
illustrated in Figure 9, Xi = {ai, bi} for i ∈ [3]. The set IX = X1 and the set
I∗ = IX ∪ (I \ {x1}) = {a1, b1, x2, x3} given by the shaded vertices form an ID-set in
the graph and the set V \ I∗ given by the white vertices form a TD-set in G. Thus,
{I∗, V \ I∗} is a TDID-partition of the Petersen graph G.

x1

x

x3

b3b1

x2

a1 a3

b2a2

Fig. 9. A TDID-partition in the Petersen graph P (5, 2)

5. TOROIDAL GRAPHS

In this section, we consider a special class of 4-regular graphs, called toroidal graphs.
A toroidal graph, or simply a torus, is a Cartesian product of two cycles. Thus, a torus
is a Cartesian product of the form Cm □Cn where m, n ≥ 3. We denote such a torus by
Gm,n, and we define its vertex set by V (Gm,n) = {(i, j) : i ∈ [m], j ∈ [n]}, where (i, j)
is adjacent to (k, ℓ) if i = k and |j − ℓ| ∈ {1, n − 1} or j = ℓ and |i − k| ∈ {1, m − 1}.
For a fixed value of i, the set of vertices of the form (i, j) where j ∈ [n], is called the
ith row of Gm,n, and for a fixed value of j, the set of vertices of the form (i, j) where
i ∈ [m], is called the j-th column of Gm,n. Thus, the vertex (i, j) is placed in the ith
row and jth column of the grid. In this section, we show that every torus is a TI-graph.

Theorem 5.1. The torus Cm □Cn is a TI-graph for all m, n ≥ 3.
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Proof. For m, n ≥ 3, let Gm,n be the torus Cm □Cn and let V = V (Gm,n). Assume
n ≥ m = 3. For n even, let

Ieven = {(1, j) : j where j ∈ [n − 1] is odd}
∪ {(3, j) : j where j ∈ [n] is even},

and for n odd, let

Iodd = {(1, j) : j where j ∈ [n − 2] is odd}
∪ {(3, j) : j where j ∈ [n − 1] is even}
∪ {(2, n)}.

As an example, the shaded vertices in Figure 10(a) form the set Ieven in the torus
G3,8, and the shaded vertices in Figure 10(b) form the set Iodd in the torus G3,9. For
n ≥ 4 even, the set Ieven is an ID-set in G3,n whose complement V \Ieven is a TD-set in
G3,n, and for n ≥ 3 odd, the set Iodd is an ID-set in G3,n whose complement V \ Iodd
is a TD-set in G3,n. The torus G3,n is therefore a TI-graph for all n ≥ 3.

(a) G3,8 (b) G3,9

Fig. 10. TDID-partitions in the torus G3,8 and G3,9

Hence, we may assume in the remainder of the proof that m ≥ 4 and n ≥ 4.
Further, by symmetry we may assume n ≥ m. We consider cases based on the values
of m and n modulo 4. We first define a set Ik,ℓ of vertices in a torus Gm,n where
k ≤ m and ℓ ≤ n. For i ∈ [k] and j ∈ [ℓ], let

Ik,ℓ = {(i, j) : i ≡ 0 (mod 4) and j ≡ 2 (mod 4)}
∪ {(i, j) : i ≡ 1 (mod 4) and j ≡ 3 (mod 4)}
∪ {(i, j) : i ≡ 2 (mod 4) and j ≡ 1 (mod 4)}
∪ {(i, j) : i ≡ 3 (mod 4) and j ≡ 0 (mod 4)}.

For example, the shaded vertices in Figure 11 form the set I4,4 in the torus G4,4.
We note that the set I4,4 is an ID-set of G4,4 and {I4,4, V \ I4,4} is a TDID-partition
of the vertices of G4,4.
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Fig. 11. A TDID-partition in the torus G4,4

We now consider cases based on the values of m and n modulo 4. In each case,
we give a TDID-partition of Gm,n.

Case 1. m ≡ 0 (mod 4) and n ≡ 0 (mod 4). In this case when m and n are equivalent
to 0 modulo 4, the set Im,n is an ID-set of Gm,n and {Im,n, V \Im,n} is a TDID-partition
of the vertices of Gm,n. For example, the shaded vertices in Figure 12 form the ID-set
I8,12 in the torus G8,12 and the white vertices (in V \ I8,12) form a TD-set in G8,12.

Fig. 12. A TDID-partition in the torus G8,12

In the remaining cases, we define a set I in the torus Gm,n satisfying the property
that the partition {I, V \ I} is a TDID-partition of Gm,n where I is an ID-set and
V \ I is a TD-set of Gm,n.

Case 2. m ≡ 0 (mod 4) and n ≡ 1 (mod 4). Let

I = Im,n−1 ∪ {(i, n) : i ≡ 0 (mod 4) and i ∈ [m]}.

For example, the shaded vertices in Figure 13(a) form the set I in the torus G4,5.
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Case 3. m ≡ 0 (mod 4) and n ≡ 2 (mod 4). Let I = Im,n. For example, the shaded
vertices in Figure 13(b) form the set I in the torus G4,6.

Case 4. m ≡ 0 (mod 4) and n ≡ 3 (mod 4). Let

I = Im,n ∪ {(i, n) : i ≡ 3 (mod 4) and i ∈ [m])}.

For example, the shaded vertices in Figure 13(c) form the set I in the torus G4,7.

(a) G4,5 (b) G4,6 (c) G4,7

Fig. 13. TDID-partitions in the torus G4,5, G4,6 and G4,7

Case 5. m ≡ 1 (mod 4) and n ≡ 1 (mod 4). Let

I = Im−1,n−1 ∪ {(m, n)}
∪ {(m, j) : j ≡ 0 (mod 4) and j ∈ [n − 2]}
∪ {(i, n) : i ≡ 0 (mod 4) and i ∈ [m − 2]}.

For example, the shaded vertices in Figure 14(a) form the set I in the torus G5,5.

Case 6. m ≡ 1 (mod 4) and n ≡ 2 (mod 4). Let

I = Im−1,n−2

∪ {(m, j) : j ≡ 1 (mod 4) and j ∈ [n − 2]}
∪ {(i, n − 1) : i ≡ 1 (mod 4) and i ∈ [m − 1]}
∪ {(i, n) : i ≡ 0 (mod 4) and i ∈ [m − 1]}
∪ {(m, n − 2)}.

For example, the shaded vertices in Figure 14(b) form the set I in the torus G5,6.

Case 7. m ≡ 1 (mod 4) and n ≡ 3 (mod 4). Let

I = Im−1,n

∪ {(m, j) : j ≡ 1 (mod 4) and j ∈ [n]}
∪ {(i, n) : i ≡ 3 (mod 4) and i ∈ [m − 1]}.

For example, the shaded vertices in Figure 14(c) form the set I in the torus G5,7.
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(a) G5,5 (b) G5,6 (c) G5,7

Fig. 14. TDID-partitions in the torus G5,5, G5,6 and G5,7

Case 8. m ≡ 2 (mod 4) and n ≡ 2 (mod 4). Let

I = Im−2,n−2

∪ {(m − 1, j) : j ≡ 0 (mod 4) and j ∈ [n − 2]}
∪ {(m, j) : j ≡ 1 (mod 4) and j ∈ [n − 2]}
∪ {(i, n − 1) : i ≡ 1 (mod 4) and i ∈ [n − 2]}
∪ {(i, n) : i ≡ 0 (mod 4) and i ∈ [m − 2]}.

For example, the shaded vertices in Figure 15(a) form the set I in the torus G6,6.

Case 9. m ≡ 2 (mod 4) and n ≡ 3 (mod 4). Let

I = Im,n ∪ {(i, n) : i ≡ 3 (mod 4) and i ∈ [m − 1]}.

For example, the shaded vertices in Figure 15(b) form the set I in the torus G6,7.

(a) G6,6 (b) G6,7

Fig. 15. TDID-partitions in the torus G6,6 and G6,7
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Case 10. m ≡ 3 (mod 4) and n ≡ 3 (mod 4). Let

I = Im,n

∪ {(m, j) : j ≡ 2 (mod 4) and j ∈ [n − 1]}
∪ {(i, n) : i ≡ 3 (mod 4) for i ∈ [m − 3]}.

For example, the shaded vertices in Figure 15(b) form the set I in the torus G7,7.
We deduce from the above ten cases that the torus Gm,n is a TI-graph. This

completes the proof of Theorem 5.1.

6. CUBIC GRAPHS

In this section, we present examples and constructions of cubic graphs that are
TI-graphs, as well as examples and constructions of cubic graphs that are not TI-graphs.

6.1. CUBIC TI-GRAPHS

In this section, we present examples of (connected) cubic graphs of small order that
are TI-graphs. We also present infinite families of connected cubic graphs where every
graph in the family is a TI-graph. As shown earlier, the Petersen graph P (5, 2) illus-
trated in Figure 9 is a cubic TI-graph. The nonplanar cubic graph G8.1 of order 8
illustrated in Figure 16 is another example of a cubic TI-graph of small order, where
the shaded vertices form an ID-set and the white vertices form a TD-set in the
graph. Moreover, these two sets partition the vertex set of G8.1, yielding a TI-graph.

Fig. 16. The nonplanar cubic graph G8.1 of order 8

For ℓ ≥ 1, let G1
cubic be the family of cubic graphs constructed in [7] by taking

a copy of a cycle C3ℓ with vertex sequence a1b1c1 . . . aℓbℓcℓ, and for each i ∈ [ℓ], adding
the vertices {wi, xi, yi, z1

i , z2
i }, and joining ai to wi, bi to xi, and ci to yi, and further

for each j ∈ [2], joining zj
i to each of the vertices wi, xi, and yi. A graph in the family

G1
cubic is illustrated in Figure 17, where the shaded vertices form an independent set I

and the white vertices form a TD-set T , yielding the TDID-partition {I, T} of G.
We state this formally as follows.

Proposition 6.1. Every graph in the family G1
cubic is a TI-graph.
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Fig. 17. A graph in the family G1
cubic

We construct next other infinite families of cubic graphs that are TI-graphs. For
this purpose, associated with an arbitrary edge e = uv of a cubic graph G, let Ge,1,
Ge,2, Ge,3, and Ge,4 be the four graphs given in Figures 18(a), 18(b), 18(c), and 18(d),
respectively. We call these four graphs gadgets associated with the edge e in G and
note that they are samples of many graphs that could be used as gadgets. If G is
an arbitrary cubic graph, then let G∗ be the graph obtained from G by replacing
every edge e in G with one of the gadgets Ge,1, Ge,2, Ge,3, and Ge,4. Let {Ie, Te}
be the TDID-partition of the gadget Ge,i where i ∈ [4] as given in Figure 18, where
the shaded vertices form the ID-set Ie and the white vertices the TD-set Te of the
gadget Ge,i. Let

I∗ =
⋃

e∈E(G)

Ie and T ∗ =
⋃

e∈E(G)

Te.

We note that V (G) ⊂ I∗. The set I∗ is an ID-set of G∗ and the set T ∗ is a
TD-set of G∗, implying that the partition {I∗, T ∗} of the newly constructed cubic
graph G∗ built from the cubic graph G is a TDID-partition of G∗. We state this
formally as follows.

Proposition 6.2. If G is an arbitrary cubic graph, then the graph obtained from G
by replacing every edge e of G with any one of the gadgets Ge,1, Ge,2, Ge,3 and Ge,4
in Figure 18 is a cubic TI-graph.

u v

(a) Ge,1

u v

(b) Ge,2

u v

(c) Ge,3

u v

(c) Ge,4

Fig. 18. Gadgets associated with an edge e = uv in a cubic graph
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6.2. CUBIC GRAPHS THAT ARE NOT TI-GRAPHS

In this section, we present examples of (connected) cubic graphs that are not TI-graphs.
We begin with examples of cubic graphs of small order that are not TI-graphs. As
observed earlier, the graph K3,3 shown in Figure 19(a) is not a TI-graph.

Proposition 6.3. The graph G8.2 shown in Figure 19(b) is not a TI-graph.

Proof. Let G be the nonplanar cubic graph G8.2 shown in Figure 19(a). Suppose,
to the contrary, that G contains a TDID-partition {I, T} where I is an ID-set of G
and T is a TD-set of G. We note that G is vertex-transitive. Renaming the vertices
if necessary, we may assume that v1 ∈ I, implying that N(v1) = {v2, v5, v8} ⊆ T .
Suppose that v3 or v7 belongs to the set I. By symmetry, we may assume that v3 ∈ I,
implying that {v4, v7} ⊂ T . In this case, N(v6) = {v2, v5, v7} ⊂ T , implying that
v6 ∈ I in order for the set I to dominate the vertex v6. But then N(v2) ⊆ I, and so the
vertex v2 is not totally dominated by the set T , a contradiction. Hence {v3, v7} ⊂ T .
This implies that {v4, v6} ⊂ I in order for the set I to dominate the vertices v3 and v7.
However, then, N(v5) ⊆ I, and so the vertex v5 is not totally dominated by the set T ,
a contradiction.

The 5-prism C5 □K2 shown in Figure 19(c) is another example of a cubic graph of
small order that is not a TI-graph. A proof of this property of the 5-prism is along
similar lines to that of Proposition 6.3, and hence we omit a proof.

Proposition 6.4. The graph G12 shown in Figure 19(d) is not a TI-graph.

Proof. Let G be the cubic graph G12 shown in Figure 19(d). Suppose, to the contrary,
that G contains a TDID-partition {I, T} where I is an ID-set of G and T is a TD-set
of G. We show firstly that I ∩ {u1, u2, y1, y2} = ∅. Suppose that one of u1, u2, y1, and
y2 belongs to the set I. By symmetry, we may assume that y1 ∈ I. Thus, N(y1) =
{x1, x2, x3} ⊆ T , implying that y2 ∈ I in order for the set I to dominate the vertex y2.
Moreover, {v2, w1, w2} ⊆ T in order for the set T to totally dominate the vertices
x1, x2, and x3. This implies that {v1, v3} ⊂ I in order for the set I to dominate the
vertices w1 and w2. Since all neighbors of vertices in I belong to the set T , we infer
that {u1, u2} ⊂ T . But then v2 and all its neighbors belong to the set T , and so v2
is not dominated by the set I, a contradiction. Hence, I ∩ {u1, u2, y1, y2} = ∅. Thus,
{u1, u2, y1, y2} ⊆ T .

In order to dominate the vertices y1 and y2, we have I∩{x1, x2, x3} ≠ ∅ and in order
to totally dominate the vertices y1 and y2, we have T ∩{x1, x2, x3} ≠ ∅. If {x1, x3} ⊆ T ,
then {w1, w2} ⊆ I in order for the set I to dominate the vertices x1 and x3. However,
w1 and w2 are adjacent vertices, contradicting the independence of the set I. Hence,
at least one of x1 and x3 belongs to the set I. By symmetry, we may assume that
x1 ∈ I, and so w1 ∈ T . Thus, by our earlier assumptions, N(v1) = {u1, u2, w1} ⊆ T ,
implying that v1 ∈ I in order for the set I to dominate the vertex v1. This in turn
implies that w2 ∈ T in order for the set T to totally dominate the vertex w1. Thus,
N(v3) = {u1, u2, w2} ⊆ T , implying that v3 ∈ I in order for the set I to dominate
the vertex v3. Hence, v2 ∈ T in order for the set T to totally dominate the vertices
u1 and u2. This in turn implies that x2 ∈ I in order for the set I to dominate the
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vertex v2. As observed earlier, T ∩ {x1, x2, x3} ≠ ∅, implying that x3 ∈ T . But then
x3 and all its neighbors belong to the set T , and so x3 is not dominated by the set I,
a contradiction.

u1 u2 u3

v1 v2 v3

(a) K3,3

v1

v2

v3

v4

v5

v6
v7

v8

(b) G8.2

v1

v2

v3

v4v5

u1

u2

u3
u4u5

(c) C5 □K2

u1 u2

v1 v2 v3

y1 y2

x1 x2 x3

w1 w2

(d) G12

Fig. 19. Examples of cubic graphs of small orders that are not TI-graphs

For k ≥ 1, let G2
cubic be the family of cubic graphs Gk constructed in [7] by

taking two copies of the cycle C4k with respective vertex sequences u1u2, . . . , u4k

and v1, v2, . . . , v4k and adding edges as follows. Add the edges uivi for i ∈ [4k − 2]
and i ≡ 1, 2 (mod 4) and add the edges uivi+1 and viui+1 for i ∈ [4k − 1] and
i ≡ 3 (mod 4), where addition is modulo 4k. The graph G3 in the family G2

cubic is
illustrated in Figure 20.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Fig. 20. The graph G3 in the family G2
cubic

Proposition 6.5. No graph in the family G2
cubic is a TI-graph.

Proof. Let Gk be a graph in the family G2
cubic for some k ≥ 1, and so Gk has order 8k.

If k = 1, then the graph G1 is the graph G8.2 shown in Figure 19(b). As shown in
Proposition 6.3, the graph G1 is not a TI-graph. Hence, we may assume that G = Gk

for some k ≥ 2. Throughout the proof we take the indices modulo 4k. Suppose, to the
contrary, that G contains a TDID-partition {I, T} where I is an ID-set of G and T is
a TD-set of G. If I contains no vertex from the set {u7, v7, u8, v8}, then u6 and v6 are
in I to dominate the vertices u7 and v7. However, then the set I is not an independent
set, a contradiction. Hence, I contains at least one vertex from the set {u7, v7, u8, v8}.
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By symmetry, we may assume that u7 ∈ I, and so N(u7) = {u6, u8, v8} ⊆ T .
If v7 ∈ I, then {u9v9} ⊂ T in order for the set T to totally dominate the vertices
u8 and v8. However, this would imply that {u10, v10} ⊂ I in order for the set I to
dominate the vertices u9 and v9, and so I would contain two adjacent vertices, namely
u10 and v10, a contradiction. Hence, v7 ∈ T . In order to dominate the vertex v7, the
set I therefore contains the vertex v6, and so the neighbor v5 of v6 belongs to the set T .
In order to totally dominate the vertex u6, the set T contains the vertex u5. This in
turn implies that the set I contains the vertex u4 in order to dominate the vertex u5,
and so {u3, v3} ⊂ N(u4) ⊂ T . Thus, I contains the vertex v4 in order to dominate
the vertex v4. Hence, {u2, v2} ⊂ T in order for the set T to totally dominate the
vertices u3 and v3. However, this would imply that {u1, v1} ⊂ I in order for the set I
to dominate the vertices u2 and v2, and so again I would contain two adjacent vertices,
namely u1 and v1, a contradiction.

6.3. CONCLUDING REMARKS

Using a link between hypergraphs and regular graphs established by Thomassen [25],
Henning and Yeo [18] proved that the vertex set of every r-regular graph, for r ≥ 4, can
be partitioned into two disjoint TD-sets. However, this is not true for cubic graphs as
observed by Seymour [22] and Alon and Bregman [1] who showed that the hypergraph
equivalent of this result is not true for 3-uniform hypergraphs (as may be seen by
considering, for example, the Fano plane). Indeed, there are infinitely many (connected)
cubic graphs whose vertex sets cannot be partitioned into two TD-sets.

Theorem 6.6 ([1, 18, 22, 25]). For every r-regular graph G, for r ≥ 4, V (G) can be
partitioned into two TD-sets. However, there are infinitely many (connected) cubic
graphs whose vertex set cannot be partitioned into two TD-sets.

In contrast, not all r-regular graphs for any r ≥ 4 are TI-graphs. In this paper, we
have presented infinite families of r-regular graphs for any fixed r ≥ 3 where every
graph in the family is a TI-graph and also infinite families of r-regular graphs for any
r ≥ 3 where every graph in the family is not a TI-graph. We close with the following
problem.

Problem 6.7. Characterize the r-regular graphs, for r ≥ 3, that are TI-graphs.
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