PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The suitability of advanced geospatial technologies in monitoring mine surface displacement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study conducts a thorough review of the current scientific literature on the application of geospatial methods in the assessment of mining-induced displacement. The scope of research included technologies for determining deformation, subsidence, and landslide in mining areas. Global Navigation Satellite Systems, Unmanned Aerial Vehicles, Terrestrial Laser Scanners, Remote Sensing, and fusion methods are approaches used to solve the research objectives. Additionally, the paper also mentions some advantages, disadvantages, and scope of application of these methods. The investigation revealed that the displacement detection method most commonly used at the moment is satellite radar interferometry.
Rocznik
Strony
506--519
Opis fizyczny
Bibliogr. 100 poz.
Twórcy
  • Faculty of Geomatics and Land Administration, Hanoi University of Mining and Geology, 18 Vien Street, Hanoi, Viet Nam
autor
  • Thuyloi University, 175 Tay Son street, Hanoi, Viet Nam
  • Thuyloi University, 175 Tay Son street, Hanoi, Viet Nam
Bibliografia
  • [1] Said KO, Onifade M, Akinseye P, Kolapo P, Abdulsalam J. A review of geospatial technology-based applications in mineral exploration. Geojournal 2023;88(3):2889e911.
  • [2] Utilization of geospatial technology for land use planning and sustainable agricultural mapping in Aceh Province, Indonesia: a case study. In: Sugianto S, Rusdi M, Baihaqi A, Fazlina Y, editors. IOP conference series: earth and environmental science. IOP Publishing; 2021.
  • [3] The improvement of the access to public geospatial data of cadastral and surveying and mapping as a part of the development of a NSDI in northrhinewestphalia, germany. In: Riecken J, editor. Proceedings of the 4rd AGILE conference on geographic information science, Brno, Czech Republic; 2001.
  • [4] Miyazaki H, Nagai M, Shibasaki R. Reviews of geospatial information technology and collaborative data delivery for disaster risk management. ISPRS Int J GeoInf 2015;4(4): 1936e64.
  • [5] Dwivedi R. Book reviewdgeospatial technologies for land degradation assessment and management. Photogramm Eng Rem Sens 2020;86(9):529e30.
  • [6] Bishop MP, James LA, Shroder Jr JF, Walsh SJ. Geospatial technologies and digital geomorphological mapping: concepts, issues and research. Geomorphology 2012;137(1): 5e26.
  • [7] Satapathy DR, Katpatal Y, Wate S. Application of geospatial technologies for environmental impact assessment: an Indian Scenario. Int J Rem Sens 2008;29(2):355e86.
  • [8] Okpuvwie EJ, Mouhamadou IT. Application of geospatial technologies in military operations. Socialscientia 2023;8(2).
  • [9] Nguyen LQ, Bui LK, Ngoc Q, Tran T. Advances in geospatial technology in mining and earth sciences. Environmental Science and Engineering; 2023. https://doi.org/ 10.1007/978-3-031-20463-0_1.
  • [10] Acharya TD, Lee DH. Remote sensing and geospatial technologies for sustainable development: a review of applications. Sensor Mater 2019;31.
  • [11] Perez Hoyos IC, Krakauer NY, Khanbilvardi R, Armstrong RA. A review of advances in the identification and characterization of groundwater dependent ecosystems using geospatial technologies. Geosciences 2016;6(2):17.
  • [12] Ahansal Y, Bouziani M, Yaagoubi R, Sebari I, Sebari K, Kenny L. Towards smart irrigation: a literature review on the use of geospatial technologies and machine learning in the management of water resources in arboriculture. Agronomy 2022;12(2):297.
  • [13] Kaur H, Kaur A, Singh B, Bhatt R. Application of geospatial technology in assessment of spatial variability in soil properties: a review. Curr J Appl Sci Technol 2020;39(39): 57e71.
  • [14] Khan F, Das B, Mishra SRK, Awasthy M. A review on the feasibility and application of geospatial techniques in geotechnical engineering field. Mater Today Proc 2022;49: 311e9.
  • [15] Schwartz-Belkin I, Portman ME. A review of geospatial technologies for improving marine spatial planning: challenges and opportunities. Ocean Coast Manag 2023;231: 106280.
  • [16] Dang TM, Nguyen BD. Applications of UAVs in mine industry: a scoping review. J Sustain Min 2023;22.
  • [17] Ang MLE, Owen JR, Gibbins CN, Lebre E, Kemp D, Saputra MRU, et al. Systematic review of GIS and remote sensing applications for assessing the socioeconomic impacts of mining. J Environ Dev 2023;32(3):243e73.
  • [18] Application of unmanned aerial vehicles for surveying and mapping in mines: a review. In: Nguyen LQ, Dang MT, Bui LK, Ngoc QB, Tran TX, editors. International conference on geo-spatial technologies and earth resources. Springer; 2022.
  • [19] Karan SK, Samadder SR, Maiti SK. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands. J Environ Manag 2016;182:272e83.
  • [20] Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group* t. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009;151(4):264e9.
  • [21] Jing-Xiang G, Hong H. Advanced GNSS technology of mining deformation monitoring. Procedia Earth Planet Sci 2009;1(1):1081e8.
  • [22] Ground deformation monitoring techniques at continuous surface lignite mines. In: Prokos A, Roumpos C, editors. 4th joint international symposium on deformation monitoring (JISDM) Athens, Greece; 2019.
  • [23] Rodriguez-Lloveras X, Puig-Polo C, Lantada N, Gili JA, Marturia J. Two decades of GPS/GNSS and DInSAR monitoring of Cardona salt mines (NE of Spain)enatural and mining-induced mechanisms and processes. Proc Int Assoc Hydrol Sci 2020;382:167e72.
  • [24] Liu C, Gao J, Yu X, Zhang J, Zhang A. Mine surface deformation monitoring using modified GPS RTK with surveying rod: initial results. Surv Rev 2015;47(341): 79e86.
  • [25] Gao J-x, Chao L, Jian W, Li Z-k, Meng X-c. A new method for mining deformation monitoring with GPS-RTK. Trans Nonferrous Metals Soc China 2011;21:s659e64.
  • [26] Tondas D, Kazmierski K, Kapłon J. Real-time and near realtime displacement monitoring with GNSS observations in the mining activity areas. IEEE J Sel Top Appl Earth Obs Rem Sens 2023;16:5963e72.
  • [27] Issabek T, Dyomin V, Ivadilinova D. Methods for monitoring the earth surface displacement at points of small geodetic network under the underground method of coal development. Natsional’nyi Hirnychyi Universytet Nauko-vyi Visnyk 2019;(2):13e20.
  • [28] Costantino D, Angelini MG. Geodetic monitoring applied to a mine area. Appl Geomat 2011;3:61e74.
  • 29] Szczerbowski Z, Jura J. Mining induced seismic events and surface deformations monitored by GPS permanent stations. Acta Geodyn Geomater 2015;12(3):179.
  • [30] Sokoła-Szewioła V, Siejka Z. Validation of the accuracy of geodetic automated measurement system based on GNSS platform for continuous monitoring of surface movements in post-mining areas. Rep Geodesy Geoinf 2021;112.
  • [31] Pham CK, Tran DT, Nguyen VH. GNSS/CORS-Based technology for real-time monitoring of landslides on waste dumpeA case study at the deo nai South dump, vietnam. Inz Miner 2020;1(2):181e91.
  • [32] Hu H, Gao J, Yao Y. Land deformation monitoring in mining area with PPP-AR. Int J Min Sci Technol 2014;24(2): 207e12.
  • [33] Xu C-h, Wang J-l, Gao J-x, Jian W, Hong H. Precise point positioning and its application in mining deformation monitoring. Trans Nonferrous Metals Soc China 2011;21: s499e505.
  • [34] Possibilities of AI algorithm execution in GNSS. In: Jagiwala D, Shah SN, editors. 2022 URSI regional conference on radio science (USRI-RCRS). IEEE; 2022.
  • [35] Lian X, Shi L, Kong W, Han Y, Fan H. Residual subsidence time series model in mountain area caused by underground mining based on GNSS online monitoring. Int J Coal Sci Technol 2024;11(1):27.
  • [36] Huang G, Du S, Wang D. GNSS techniques for real-time monitoring of landslides: a review. Satellite Navigation 2023;4(1):5.
  • [37] Jiang W, Wang J, Li Z, Li W, Yuan P. A new deep selfattention neural network for GNSS coordinate time series prediction. GPS Solut 2024;28(1):3.
  • [38] Mosavi SMR, Baselga S, Liu Y. Artificial intelligence applications in GNSS. J Glob Navig Satellite Syst 2020;28(1).
  • [39] Li R, Zhang Z, Gao Y, Zhang J, Ge H. A new method for deformation monitoring of structures by precise point positioning. Remote Sens 2023;15(24):5743.
  • [40] Lipecki T, Huong KTT. The development of terrestrial laser scanning technology and its applications in mine shafts in Poland. Inz Miner 2020;1(2).
  • [41] Matwij W, Gruszczyński W, Puniach E, Cwiąkała P. Determination of underground mining-induced displacement field using multi-temporal TLS point cloud registration. Measurement 2021;180:109482.
  • [42] Skoczylas A, Kamoda J, Zaczek-Peplinska J. Geodetic monitoring (TLS) of a steel transport trestle bridge located in an active mining exploitation site. Ann Warsaw Univ Life Sci - SGGW Land Reclam 2016;48(3).
  • [43] Wang L, Li J, Jiang C, Huang J. Automatic deformation extraction method of buildings in mining areas based on TLS point clouds. IEEE Access 2021;10:127817e24.
  • [44] Kukutsch R, Kajzar V, Konicek P, Waclawik P, Ptacek J. Possibility of convergence measurement of gates in coal mining using terrestrial 3D laser scanner. J Sustain Min 2015;14(1):30e7.
  • [45] Van der Merwe J, Andersen DC. Applications and benefits of 3D laser scanning for the mining industry. J S Afr Inst Min Metall 2013;113(3).
  • [46] Bing S, Zheng N-s, Li D-w, Chen R-l, Liang L. Reconstructing DEM using TLS point cloud data and NURBS surface. Trans Nonferrous Metals Soc China 2015;25(9):3165e72.
  • [47] Gu Y, Zhou D, Zhang D, Wu K, Zhou B. Study on subsidence monitoring technology using terrestrial 3D laser scanning without a target in a mining area: an example of Wangjiata coal mine, China. Bull Eng Geol Environ 2020;79: 3575e83.
  • [48] Ghabraie B, Ren G, Smith J, Holden L. Application of 3D laser scanner, optical transducers and digital image processing techniques in physical modelling of mining-related strata movement. Int J Rock Mech Min Sci 2015;80:219e30.
  • [49] Li J, Wang L. Mining subsidence monitoring model based on BPM-EKTF and TLS and its application in building mining damage assessment. Environ Earth Sci 2021;80(11): 396.
  • [50] Do TPT, Nguyen LQ, Vambol V. Comprehensive review of unmanned aerial vehicle application to safety mining management. Ecol Quest 2024;35(4):1e41.
  • [51] Cwiąkała P, Gruszczyński W, Stoch T, Puniach E, Mrocheń D, Matwij W, et al. UAV applications for determination of land deformations caused by underground mining. Remote Sens 2020;12(11):1733.
  • [52] Yavuz G. Aęok maden isletmelerinde insansoz hava araco (IHA) uygulamalaro. Turk Jeol Bul 2019;62(1):99e112.
  • [53] Suh J, Choi Y. Mapping hazardous mining-induced sinkhole subsidence using unmanned aerial vehicle (drone) photogrammetry. Environ Earth Sci 2017;76(4):1e12.
  • [54] Park S, Choi Y. Applications of unmanned aerial vehicles in mining from exploration to reclamation: a review. Minerals 2020;10(8):663.
  • [55] UAV for mining applications: a case study at an open-cut mine and a longwall mine in New South Wales, Australia. In: Ge L, Li X, Ng AH-M, editors. 2016 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE; 2016.
  • [56] Ignjatovic Stupar D, Roser J, Vulic M. Investigation of unmanned aerial vehicles-based photogrammetry for large mine subsidence monitoring. Minerals 2020;10(2):196.
  • [57] Dawei Z, Lizhuang Q, Demin Z, Baohui Z, Lianglin G. Unmanned aerial vehicle (UAV) photogrammetry technology for dynamic mining subsidence monitoring and parameter inversion: a case study in China. IEEE Access 2020;8: 16372e86.
  • [58] Pal A, Roser J, Vulic M. Surface subsidence prognosis above an underground longwall excavation and based on 3D point cloud analysis. Minerals 2020;10(1):82.
  • [59] Vrublova D, Kapica R, Jirankova E, Strus A. Documentation of landslides and inaccessible parts of a mine using an unmanned UAV system and methods of digital terrestrial photogrammetry. GeoScience Eng 2015;61(3).
  • [60] Kumar V, Tserendulam N, Chatterjee RS. Scatterer-based deformation monitoring induced due to coal mining by DInSAR techniques. In: Spaceborne synthetic aperture radar remote sensing. CRC Press; 2023. p. 351e62.
  • [61] Ponomarenko MRKYI, Volkov MA, Grinyuk AP. Satellite methods within integrated land surface deformation monitoring in a mine field. Min Inf Anal Bull 2020;12:103e13. https://doi.org/10.25018/0236-1493-2020-12-0-103-113.
  • [62] Mekonnen Tamrat, Hussien B. Application of remote sensing in mining. Glob Sci Educ J 2021;9:2385e94.
  • [63] Hu L, Tang X, Tomas R, Li T, Zhang X, Li Z, et al. Monitoring surface deformation dynamics in the mining subsidence area using LT-1 InSAR interferometry: a case study of Datong, China. Int J Appl Earth Obs Geoinf 2024;131:103936.
  • [64] Bing Yu, Bing Wang, Guoxiang Liu, Guo Zhang, Yunliang Hu, Jinlong Hu. Deformation monitoring and analysis of mining areas based on the DT-SDFPT combined time-series InSAR. Remote Sens Nat Res 2024;36:14e25. https://doi.org/10.6046/zrzyyg.2022378.
  • [65] Monitoring and analysis of ground deformation in mining area based on SBAS technology. In: Li Q, Yan Q, Zhang T, editors. IOP conference series: earth and environmental science. IOP Publishing; 2021.
  • [66] Hu W, Xu J, Zhang W, Zhao J, Zhou H. Retrieving surface deformation of mining areas using ZY-3 stereo imagery and DSMs. Remote Sens 2023;15(17):4315.
  • [67] Long S, Liu M, Xiong C, Li T, Wu W, Ding H, et al. Research on prediction of surface deformation in mining areas based on TPE-optimized integrated models and multi-temporal InSAR. Remote Sens 2023;15(23):5546.
  • [68] Wang L, Deng K, Zheng M. Research on ground deformation monitoring method in mining areas using the probability integral model fusion D-InSAR, sub-band InSAR and offset-tracking. Int J Appl Earth Obs Geoinf 2020;85:101981.
  • [69] Zhang B, Wu S, Ding X, Wang C, Zhu J, Li Q. Use of multiplatform SAR imagery in mining deformation monitoring with dense vegetation coverage: a case study in the fengfeng mining area, China. Remote Sens 2021;13(16):3091.
  • [70] Wang L, Deng K, Fan H, Zhou F. Monitoring of large-scale deformation in mining areas using sub-band InSAR and the probability integral fusion method. Int J Rem Sens 2019; 40(7):2602e22.
  • [71] Chen Y, Li J, Li H, Gao Y, Li S, Chen S, et al. Revealing land surface deformation over the Yineng backfilling mining area, China, by integrating distributed scatterer SAR interferometry and a mining subsidence model. IEEE J Sel Top Appl Earth Obs Rem Sens 2023;16:3611e34.
  • [72] Wang F, Tao Q, Liu G, Chen Y, Han Y, Guo Z, et al. Monitoring of surface deformation in mining area integrating SBAS InSAR and Logistic Function. Environ Monit Assess 2023;195(12):1493.
  • [73] Zhang L, Ge D, Guo X, Liu B, Li M, Wang Y. InSAR monitoring surface deformation induced by underground mining using Sentinel-1 images. Proc Int Assoc Hydrol Sci 2020;382:237e40.
  • [74] Zhang Z, Wang C, Tang Y, Zhang H, Fu Q. Analysis of ground subsidence at a coal-mining area in Huainan using time-series InSAR. Int J Rem Sens 2015;36(23):5790e810.
  • [75] Hu Z, Xu X, Zhao Y. Dynamic monitoring of land subsidence in mining area from multi-source remote-sensing dataea case study at Yanzhou, China. Int J Rem Sens 2012; 33(17):5528e45.
  • [76] Li L-j, Wu Y-b. Application of remote-sensing-image fusion to the monitoring of mining induced subsidence. J China Univ Min Technol 2008;18(4):531e6.
  • [77] Liu S, Wang H, Huang J, Wu L. High-resolution remote sensing image-based extensive deformation-induced landslide displacement field monitoring method. Int J Coal Sci Technol 2015;2:170e7.
  • [78] Liu Z, Mei G, Sun Y. Investigating deformation patterns of a mining-induced landslide using multisource remote sensing: the songmugou landslide in Shanxi Province, China. Bull Eng Geol Environ 2022;81(5):216.
  • [79] Tabish R, Yang Z, Wu L, Xu Z, Cao Z, Zheng K, et al. Predicting the settlement of mine waste dump using multisource remote sensing and a secondary consolidation model. Front Environ Sci 2022;10:885346.
  • [80] Karagianni A, Lazos I, Chatzipetros A, editors. Remote sensing techniques in disaster management: Amynteon mine landslides, Greece. Intelligent systems for crisis management: Gi4DM 2018, vol. 11. Springer; 2019.
  • [81] Jiao R, Wang S, Yang H, Guo X, Han J, Pei X, et al. Comprehensive remote sensing technology for monitoring landslide hazards and disaster chain in the xishan mining area of beijing. Remote Sens 2022;14(19):4695.
  • [82] Palama R, Crosetto M, Rapinski J, Barra A, Cuevas-Gonzalez M, Monserrat O, et al. A multi-temporal small baseline interferometry procedure applied to mining-induced deformation monitoring. Remote Sens 2022;14(9): 2182.
  • [83] Du Q, Li G, Zhou Y, Chai M, Chen D, Qi S, et al. Deformation monitoring in an alpine mining area in the tianshan mountains based on SBAS-InSAR technology. Adv Mater Sci Eng 2021;2021(1):9988017.
  • [84] Tondas D, Ilieva M, van Leijen F, van der Marel H, Rohm W. Kalman filter-based integration of GNSS and InSAR observations for local nonlinear strong deformations. J Geod 2023; 97(12):109.
  • [85] Li Y, Zuo X, Xiong P, You H, Zhang H, Yang F, et al. Deformation monitoring and analysis of Kunyang phosphate mine fusion with InSAR and GPS measurements. Adv Space Res 2022;69(7):2637e58.
  • [86] Zhou W, Zhang W, Yang X, Wu W. An improved GNSS and InSAR fusion method for monitoring the 3D deformation of a mining area. IEEE Access 2021;9:155839e50.
  • [87] Bo H, Li Y, Tan X, Dong Z, Zheng G, Wang Q, et al. Estimation of ground subsidence deformation induced by underground coal mining with GNSS-IR. Remote Sens 2022; 15(1):96.
  • [88] Li J, Gao F, Lu J, Tao T. Deformation monitoring and prediction for residential areas in the Panji mining area based on an InSAR time series analysis and the GM-SVR model. Open Geosci 2019;11(1):738e49.
  • [89] Ge L, Chang H-C, Rizos C. Mine subsidence monitoring using multi-source satellite SAR images. Photogramm Eng Rem Sens 2007;73(3):259e66.
  • [90] Junshan Y, Xin X, Xiaofeng X, Yanli W, Xiaoqiang L. Adaptive filtering algorithm and its application based on the PPP technique for deformation monitoring in mining area. Bull Surv Mapp. 2023;(9):129.
  • [91] Wang D, Huang G, Du Y, Zhang Q, Bai Z, Tian J. Stability analysis of reference station and compensation for monitoring stations in GNSS landslide monitoring. Sat Nav 2023; 4(1):29.
  • [92] Zhou D, Wu K, Chen R, Li L. GPS/terrestrial 3D laser scanner combined monitoring technology for coal mining subsidence: a case study of a coal mining area in Hebei, China. Nat Hazards 2014;70:1197e208.
  • [93] Salagean T, Rusu T, Onose D, Farcas R, Duda B, Sestras P. The use of laser scanning technology in land monitoring of mining areas. Carpath J Earth Env Sci 2016;11(2): 565e73.
  • [94] Jozkow G, Walicka A, Borkowski A. Monitoring terrain deformations caused by underground mining using UAV data. Int Arch Photogram Rem Sens Spatial Inf Sci 2021;43: 737e44.
  • [95] Puniach E, Gruszczynski W, Cwi^kala P, Matwij W. Application of UAV-based orthomosaics for determination of horizontal displacement caused by underground mining. ISPRS J Photogrammetry Remote Sens 2021;174:282e303.
  • [96] Zhu M, Yu X, Tan H, Yuan J. Integrated high-precision monitoring method for surface subsidence in mining areas using D-InSAR, SBAS, and UAV technologies. Sci Rep 2024; 14(1):12445.
  • [97] A review of geodetic and remote sensing methods used for detecting surface displacements caused by mining. In: Owczarz K, editor. IOP conference series: earth and environmental science. IOP Publishing; 2020.
  • [98] Ren H, Zhao Y, Xiao W, Hu Z. A review of UAV monitoring in mining areas: current status and future perspectives. IntJ Coal Sci Technol 2019;6:320e33.
  • [99] Loots M, Grobbelaar S, Van der Lingen E. A review of remote-sensing unmanned aerial vehicles in the mining industry. J South Afr Inst Min Metall 2022;122(7):387e96.
  • [100] Van Nguyen H, Pham KC, Nguyen DB, Nguyen LQ. Application of the GNSS method in the monitoring of mine surface displacement: a systemic review. Inz Miner J Pol Miner Eng Soc 2024;2(1):247e55.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f8b1db5-63f2-4d8b-813b-2c5f09c38101
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.