PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

SMAP products for prediction of surface soil moisture by ELM network model and agricultural drought index

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent decades, the earth’s surface data have been collected more efficiently using remote sensing, which needs drought indexes update. In this study, soil moisture (SM) data were collected from the surface layer of a high humidity climate in northern Iran using Soil Moisture Active Passive (SMAP) and field measurement. After analyzing the data, we found that the average RMSE between the field and SMAP measurement was 0.054 m³/m³. Considering the same agricultural land use and the strong correlation of 0.92 between them, the validated SMAP data were used to propose an agricultural drought index. After data validation, the extreme learning machine (ELM) model was put to the test using sigmoid, triangular, sine, and hard-limit activation functions. Of all the activation functions tested, the model with the sigmoid activation function yielded the lowest amount of error and was therefore chosen. Five years of continuous daily SM as a target, five-year daily normalized difference vegetation index, land surface temperature, and precipitation were inputs to predict one-year daily SM time series in the humid climate. From 2021 to 2022, daily surface SM was predicted with the average RMSE=0.03 m³/m³ compared to the SMAP data. Finally, a new regional agricultural drought index based on 4 years of SMAP and 1-year prediction of SMAP from 2022 to 2023 was proposed. Further investigation is needed to conclude that the application of the presented index is reliable in other climates.
Czasopismo
Rocznik
Strony
1845--1856
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • 1. Abbasi F, Bazgeer S, Kalehbasti PR, Oskoue EA, Haghighat M, Kalehbasti PR (2022) New climatic zones in Iran: a comparative study of different empirical methods and clustering technique. Theoret Appl Climatol 147(1–2):47–61. https://doi.org/10.1007/s00704-021-03785-9
  • 2. Ahlmer AK, Cavalli M, Hansson K, Koutsouris AJ, Crema S, Kalantari Z (2018) Soil moisture remote-sensing applications for identification of flood-prone areas along transport infrastructure. Environ Earth Sci 77(14):533. https://doi.org/10.1007/s12665-018-7704-z
  • 3. Ajaz A, Taghvaeian S, Khand K, Gowda PH, Moorhead JE (2019) Development and evaluation of an agricultural drought index by harnessing soil moisture and weather data. Water 11(7):1375. https://doi.org/10.3390/w11071375
  • 4. Babaeian E, Sadeghi M, Jones SB, Montzka C, Vereecken H, Tuller M (2019) Ground, proximal, and satellite remote sensing of soil moisture. Rev Geophys 57(2):530–616. https://doi.org/10.1029/2018RG000618
  • 5. Dorigo W, Van Oevelen P, Wagner W, Drusch M, Mecklenburg S, Robock A, Jackson T (2011) A new international network for in situ soil moisture data. Eos 92(17):141–142. https://doi.org/10.1029/2011EO170001
  • 6. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations - a new environmental record for monitoring extremes. Sci Data 2(1):1–21. https://doi.org/10.1038/sdata.2015.66
  • 7. Gholizadeh R, Yılmaz H, Danandeh Mehr A (2022) Multitemporal meteorological drought forecasting using Bat-ELM. Acta Geophys 70(2):917–927. https://doi.org/10.1007/s11600-022-00739-1
  • 8. Jamei M, Baygi MM, Oskouei EA, Lopez-Baeza E (2020) Validation of the SMOS level 1C brightness temperature and level 2 soil moisture data over the west and southwest of Iran. Remote Sens 12(17):1–20. https://doi.org/10.3390/rs12172819
  • 9. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Fluids Eng Trans ASME 82(1):35–45. https://doi.org/10.1115/1.3662552
  • 10. Koohi S, Azizian A, Brocca L (2019) Calibration of VIC-3L hydrological model using satellite-based surface soil moisture datasets. Iran-Water Resour Res (IR-WRR) 15(4):55–67
  • 11. Liu D, Mishra AK, Yu Z, Yang C, Konapala G, Vu T (2017) Performance of SMAP, AMSR-E and LAI for weekly agricultural drought forecasting over continental United States. J Hydrol 553:88–104. https://doi.org/10.1016/j.jhydrol.2017.07.049
  • 12. Mishra A, Vu T, Veettil AV, Entekhabi D (2017) Drought monitoring with soil moisture active passive (SMAP) measurements. J Hydrol 552:620–632. https://doi.org/10.1016/j.jhydrol.2017.07.033
  • 13. Moritz S, Bartz-Beielstein T (2017) ImputeTS: time series missing value imputation in R. R Journal 9(1):207–218. https://doi.org/10.32614/rj-2017-009
  • 14. Myhre G, Alterskjær K, Stjern CW, Hodnebrog Ø, Marelle L, Samset BH, Sillmann J, Schaller N, Fischer E, Schulz M, Stohl A (2019) Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci Rep 9(1):1–10. https://doi.org/10.1038/s41598-019-52277-4
  • 15. Nogabni MS, Rajabi M, Oskouei EA (2022) Validation and downscaling of SMAP satellite soil moisture data by the SMBDA method using sentinel 1 radar products and ground data in SalehAbad Region of Ilam. Iran Water Resour Res 17(4):144–160 (in Persian)
  • 16. Prasad R, Deo RC, Li Y, Maraseni T (2018) Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition. Geoderma 330:136–161. https://doi.org/10.1016/j.geoderma.2018.05.035
  • 17. Rodriguez-Alvarez N, Misra S, Podest E, Morris M, Bosch-Lluis X (2019) The use of SMAP-reflectometry in science applications: calibration and capabilities. Remote Sens 11(20):2442. https://doi.org/10.3390/rs11202442
  • 18. Sadri S, Wood EF, Pan M (2018) Developing a drought-monitoring index for the contiguous US using SMAP. Hydrol Earth Syst Sci 22(12):6611–6626. https://doi.org/10.5194/hess-22-6611-2018
  • 19. Sánchez N, González-Zamora Á, Piles M, Martínez-Fernández J (2016) A new Soil Moisture Agricultural Drought Index (SMADI) integrating MODIS and SMOS products: a case of study over the Iberian Peninsula. Remote Sens 8(4):287. https://doi.org/10.3390/rs8040287
  • 20. Sazib N, Mladenova I, Bolten J (2018) Leveraging the google earth engine for drought assessment using global soil moisture data. Remote Sens 10(8):1265. https://doi.org/10.3390/rs10081265
  • 21. Somorowska U (2016) Changes in drought conditions in Poland over the past 60 years evaluated by the standardized precipitation-evapotranspiration index. Acta Geophys 64(6):2530–2549. https://doi.org/10.1515/acgeo-2016-0110
  • 22. Souza AGSS, Ribeiro Neto A, de Souza LL (2021) Soil moisture-based index for agricultural drought assessment: SMADI application in Pernambuco State-Brazil. Remote Sens Environ 252:112124. https://doi.org/10.1016/j.rse.2020.112124
  • 23. Zeybekoglu U (2022) Spatiotemporal analysis of droughts in Hirfanli Dam basin, Turkey by the Standardised Precipitation Evapotranspiration Index (SPEI). Acta Geophys 70(1):361–371. https://doi.org/10.1007/s11600-021-00719-x
  • 24. Zhu Q, Wang Y, Luo Y (2021) Improvement of multi-layer soil moisture prediction using support vector machines and ensemble Kalman filter coupled with remote sensing soil moisture datasets over an agriculture dominant basin in China. Hydrol Process 35(4):1–22. https://doi.org/10.1002/hyp.14154
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f879b37-b956-46fa-a8c9-7f1090b4cc96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.