Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Single-frame methods of determining the attitude of a nanosatellite are compared in this study. The methods selected for comparison are: Single Value Decomposition (SVD), q method, Quaternion ESTimator (QUEST), Fast Optimal Attitude Matrix (FOAM) − all solving optimally the Wahba’s problem, and the algebraic method using only two vector measurements. For proper comparison, two sensors are chosen for the vector observations on-board: magnetometer and Sun sensors. Covariance results obtained as a result of using those methods have a critical importance for a non-traditional attitude estimation approach; therefore, the variance calculations are also presented. The examined methods are compared with respect to their root mean square (RMS) error and variance results. Also, some recommendations are given.
Czasopismo
Rocznik
Tom
Strony
313--324
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr., wzory
Twórcy
autor
- Istanbul Technical University, Faculty of Aeronautics and Astronautics, 34469, Maslak, Istanbul, Turkey
autor
- Istanbul Technical University, Faculty of Aeronautics and Astronautics, 34469, Maslak, Istanbul, Turkey
autor
- Istanbul Technical University, Faculty of Aeronautics and Astronautics, 34469, Maslak, Istanbul, Turkey
Bibliografia
- [1] Shuster, M.D., Oh, S.D. (1981). Three-Axis Attitude Determination from Vector Observations. Journal of Guidance and Control., 4(1), 70-77.
- [2] Wertz, J.R. (1978). Spacecraft Attitude Determination and Control. Kluwer Academic Publishers.
- [3] Hajiyev, C., Bahar, M. (2002). Increase of accuracy of the small satellite attitude determination using redundancy techniques. Acta Astronautica., 50(11), 673-679.
- [4] Shuster, M.D. (2004). Deterministic Three-Axis Attitude Determination. Journal of Astronaut Sci., 52(3), 405-419.
- [5] Wahba, G. (1965). Problem 65-1: A Least Squares Estimate of Satellite Attitude. Siam Review., 7(3), 409.
- [6] Cilden, D., Conguroglu, E.S., Hajiyev, C. (2015). Covariance Analysis of Three-Axis Attitude Determination Using Two Vector Measurements. 7th International Conference on Recent Advances in Space Technologies-RAST, Istanbul, Turkey.
- [7] Garcia, R.V., Matos, N.D.F.O., Kuga, H.K., Zanardi, M.C. (2015). Unscented Kalman filter for spacecraft attitude estimation using modified Rodrigues parameters and real data. Comp. Appl. Math., 1-12.
- [8] Cilden, D., Hajiyev, C., Soken, H.E. (2015). Attitude and Attitude Rate Estimation for a Nanosatellite Using SVD and UKF. Recent Advances in Space Technologies, Istanbul, Turkey.
- [9] Hajiyev, C., Cilden, D. (2016). Nontraditional Approach to Satellite Attitude Estimation. International Journal of Control Systems and Robotics., (1), 19-28.
- [10] Habib, T.M.A. (2013). A comparative study of spacecraft attitude determination and estimation algorithms (a cost-benefit approach). Aerospace Science and Technology., 26(1), 211-215.
- [11] Pasicane, V.L., Moore, R.C. (1994). Fundamentals of Space Systems. Oxford University Press, New York.
- [12] Zanardi, M.C., Orlando, V., Motta, G.B., Pelosi, T., Silva, W.R. (2016). Numerical and analytical approach for the spin-stabilized satellite attitude propagation. Comp. Appl. Math., 1-13.
- [13] Finlay, C., Maus, S., Beggan, C.D., Bondar, T.N., Chambodut, A., Chernova, T.A., et al. (2010). International Geomagnetic Reference Field: the eleventh generation. Commerce USDo.
- [14] Vallado, D.A. (2001). Fundamentals of Astrodynamics and Applications. Springer Science & Business Media.
- [15] Wertz, J.R. (1978). Spacecraft Attitude Determination and Control. Kluwer Academic Publishers, 424-425.
- [16] Markley, F.L., Mortari, D. (2000). Quaternion attitude estimation using vector observations. Journal of the Astronautical Sciences., 48(2), 359-380.
- [17] Vinther, K., Jensen, K.F., Larsen, J.A., Wisniewski, R. (2011). Inexpensive Cubesat Attitude Estimation Using Quaternions And Unscented Kalman Filtering. Automatic Control in Aerospace., 4.
- [18] Shuster, M.D. (1993). A Survey of Attitude Representations. The Journal of the Astronautical Sciences., 41(4).
- [19] Markley, F.L. (1991). Attitude Determination And Parameter-Estimation Using Vector Observations - Application. Journal of the Astronautical Sciences., 39(3), 367-381.
- [20] Zanetti, R., Ainscoughy, T., Christianz, J., Spanosx, P.D. (2012). Q Method Extended Kalman Filter. NASA Technical Reports.
- [21] Bar-Itzhack, I.Y. (1996). REQUEST − A Recursive QUEST Algorithm for Sequential Attitude Determination. Journal of Guidance, Control, and Dynamics., 19(5), 1034-1038.
- [22] Markley, F.L. (1993). Attitude Determination Using Vector Observations: a Fast Optimal Matrix Algorithm. Jouranl of Astronaut Sci., 41(2), 261-280.
Uwagi
EN
The work was supported by TUBITAK (The Scientific and Technological Research Council of Turkey), Grant 113E595.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f82c9fd-a93d-40e6-904d-54fad703b0ab