PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational Investigation on the Structure and Performance of Novel 4,7-dinitro-furazano-[3,4-d]-pyridazine Derivatives

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seven novel energetic 4,7-dinitro-furazano-[3,4-d]-pyridazine derivatives were designed, and their optimized structures and performances were studied by density functional theory (DFT) at B3LYP/6-311g(d,p) level. The detonation performances were estimated by the Kamlet-Jacobs equations. The results show that these compounds have high crystal densities (1.818-1.925 g·cm−3), detonation velocities (8.51-9.56 km·s−1) and detonation pressures (32.28-41.70 GPa). The bond dissociation energies (BDEs) of the weakest bond (N–O bond) vary from 70.889 kJ·mol−1 to 173.283 kJ·mol−1, and some of them exhibit higher BDEs than that of RDX (N–NO2 bond, 149.654 kJ·mol−1) and HMX (N–NO2 bond, 154.905 kJ·mol−1). M4 and M5 exhibit similar and higher detonation performance than RDX (8.81 km·s−1, 34.47 GPa). The detonation performance of M7 (9.56 km·s−1, 41.70 GPa) even surpasses that of HMX (9.10 km·s−1, 39.00 GPa). Otherwise, the specific impulse values of M1-M7 (266-279 s) outperform HMX (266 s) by 0-13 s, which indicates that M1-M7 may show better performance as monopropellants. It is concluded that density, heat of formation, stability, detonation performance and specific impulse of the designed compounds depend on the position and number of the N→O oxidation bonds.
Rocznik
Strony
26--46
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Beijing Institute of Technology, Beijing 100081, China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
Bibliografia
  • [1] Shu, Y. J.; Huo, J. C. Theory of Explosive. Chemical Industry Press, Beijing, 2011;
  • [2] Wang, X. J.; Xu, K. Z.; Sun, Q.; Wang, B. Z.; Zhou, C.; Zhao, F. L. The Insensitive Energetic Material Trifurazano-oxacycloheptatriene (TFO): Synthesis and Detonation Properties. Propellants Explos. Pyrotech. 2015, 40(1): 9-12.
  • [3] Shu, Y. J.; Wang, B. Z. Chemistry of Furoxan: Structure and Synthesis. Times Press, Chengdu, 2013; ISBN: 9787546409801.
  • [4] Frem, D. Theoretical Studies on Energetic Properties of s-Triazine Substituted Aminofurazan and Aminofuroxan Derivatives − High Performance Energetic Material Systems. Combust., Explos. Shock Waves (Engl. Transl.) 2014, 50(4): 441-446.
  • [5] Hu, H.X.; Qin, G.M.; Zhang, Z.Z. 3,4-Dinitro-furazanfuroxan explosive. Patent CN0210.7, 2002.
  • [6] Wang, X. J.; Lian, P.; Ge, Z. X. Synthesis, Characterization and of 4,4’-Dinitrodifurzaalyl Ether. Acta Chim. Sinica, 2010, 31(5): 12-14.
  • [7] Sheremetev, A. B. 3,3-Bis(1-fluoro-1,1-dinitromethyl)difurazanyl Ether. 28th Int. Annu. Conf. ICT, Karlsruhe, Germany, 1998, 58: 1-6.
  • [8] Zhou, Y. S.; Wang, X. J.; Zhou, C.; Huo, H.; Zhang, Y.; Wang, B. Z.; Zhang, Y. G.; Su, P. F. Crystal Structure of Benzotrifuroxan. Chin. J. Explos. Propell. 2012, 35(4): 26-29.
  • [9] Liu, N.; Lian, P.; Lai, W. P.; Li, H.; Wang, B. Z. Synthesis, Characterization and Performance of Difurazanopyrazine Derivatives. Chin. J. Energ. Mater. 2014, 22(4): 473-477.
  • [10] Strelenko, Yu. A.; Rakitin, O. .; Ogurtsov, V. A.; Godovikova, T. I.; Khmel‘nitskii, L. I. NMR Spectra and Structure of 4,7-Dimethylpyridazino[4,5-c]furozane N,N’- dioxide. Plenum Publishing Corporation, 1988, No. 12, pp. 2848-2850.
  • [11] Khisamutdinov, G. Kh.; Mratkhuzina, T. A.; Gabdullin, R. M.; Abdrakhmanov, I. Sh.; Smirnov, S. P.; Rakitin O. A.; Godovikova, T. L.; Khmel‘nitsskii, L. L. Synthesis of 4,7-Diaminopyridazino [4,5-c]furoxan. Russ. Chem. Bull. 1995, 44(8): 1499-1500.
  • [12] Shaposhnikov, S. D.; Pirogov, S. V.; Mel‘nikova, S. F.; Tselinsky, I. V.; Näther, C.; Graening, T.; Traulsenc, T.; Friedrichsen, W. Ring-opening and Recyclization of 3,4-Diacylfuroxans by Nitrogen Nucleophiles. Tetrahedron 2003, 59(7): 1059-1066.
  • [13] Ivanova, O. A.; Averina, E. B.; Kuznetsova, T. S.; Zefirov, N. S. Synthesis of New 3,4-Disubstituted Furazan. Chem. Heterocycl. Compd. 2000, 36(9): 1091-1096.
  • [14] Muthurajan, H.; Sivabalan, R.; Talawar, M. B.; Anniyappan, M.; Venugopalan, S. Prediction of Heat of Formation and Related Parameters of High Energy Materials. J. Hazard. Mater. A 2006, 133(1-3): 30-45.
  • [15] Wu, Q.; Zhu, W. H.; Xiao, H. M. Structural Transformation and Absorption Properties of Crystalline 7-Amino-6-nitrobenzodifuroxzan under High Pressure. J. Phys. Chem. C 2013, 117(33): 16830-16839.
  • [16] Zhou, Y.; Long, X. P.; Shu, Y. J. Theoretical Study on the Azido-cyclization of 3,6-Di(azido)-1,2,4,5-tetrazine. Chin. J. Chem. 2010, 28(11): 2123-2129.
  • [17] Pan, Y.; Li, J. S.; Cheng, B. B.; Zhu, W. H.; Xiao, H. M. Computational Studies on the Heats of Formation, Energetic Properties, and Thermal Stability of Energetic Nitrogen-rich Furazano[3;4-b]pyrazine-based Derivatives. Comput. Theor.Chem. 2012, 992: 110-119.
  • [18] Wei, T.; Zhu, W. H.; Zhang, J. J.; Xiao, H. M. DFT Study on Energetic Tetrazolo-[1,5-b]-1,2,4,5-tetrazine and 1,2,4-Triazolo-[4,3-b]-1,2,4,5-tetrazine Derivatives. J. Hazard. Mater. 2010, 179(1-3): 581-590.
  • [19] Dippold, A. A.; Klapötke, T. M. A Study of Dinitro-bis-1,2,4-triazole-1,1’-diol and Derivatives: Design of High-Performance Insensitive Energetic Materials by the Introduction of N-Oxides. J. Am. Chem. Soc. 2013, 135(26): 9931-9938.
  • [20] Göebel, M.; Karaghiosoff, K.; Klapötke, T. M.; Piercey, D. G.; Stierstorfer, J. Nitrotetrazolate-2N-oxides and Strategy of N-Oxides Introduction. J. Am. Chem. Soc. 2010, 132(48): 17216-17226.
  • [21] Zhang, J. H.; Shreeve, J. M. 3,3’-Dinitroamino-4,4’-azoxyfurazan and Its Derivatives: an Assembly of Diverse N−O Building Blocks for High-performance Energetic Materials. J. Am. Chem. Soc. 2014, 136(11): 4437-4445.
  • [22] Fischer, N.; Fischer, D.; Klapötke, T. M.; Piercey, D. G.; Stierstorfer, J. Pushing the Limits of Energetic Material − the Synthesis and Characterization of Dihydroxylammonium 5, 5’-Bistetrazole-1,1’-diolate. J. Mater. Chem. 2012, 38(22): 20418-20422.
  • [23] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O., Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J. and Fox, D. J. Gaussian 09, Revision B. 01, Gaussian, Inc., Wallingford, CT, USA, 2009.
  • [24] Wei, T.; Zhu, W. H.; Zhang, X. W.; Li, Y. F.; Xiao, H. M. Molecular Design of 1,2,4,5-Tetrazine-based High-energy Density Materials, J. Phys. Chem. A. 2009, 113(33): 9404-9412.
  • [25] Shao, Y. L.; Zhu, W. H.; Xiao, H. M. Structure-property Relationships of Energetic Nitrogen-rich Salts Composed of Triaminoguanidinium or Ammonium Cation and Tetrazole-based Anions, J. Mol. Graph. Model. 2013, 40: 54-63.
  • [26] Politzer, P.; Ma, Y.; Lane, P.; Concha, M.C. Computational Prediction of Standard Gas, Liquid, and Solid-phase Heats of Formation and Heat of Vaporization and Sublimation, Int. J. Quantum. Chem. 2005, 105(4): 341-347.
  • [27] Rice, B. M.; Hare, J. J.; Byrd, E. F. C. Accurate Predictions of Crystal Densities Using Quantum Mechanical Molecular Volumes. J. Phys. Chem. A 2007, 111(42): 10874-10879.
  • [28] Zhang, X. W.; Zhu, W. H.; Xiao, H. M. Theoretical Studies on Heats of Formation, Detonation Properties, and Bond Dissociation Energies of Monofurazan Derivatives. Int. J. Quantum. Chem. 2010, 110(8): 1549-1558.
  • [29] Jing, M.; Li, H. R.; Wang, J., Shu, Y. J.; Zhang, X. Y.; Ma Q.; Huang Y. G. Theoretical Investigation on the Structure and Performance of N,N’-Azobispolynitrodiazoles. J. Mol. Model. 2014, 20: 2155.
  • [30] Shu, Y. J.; Long, X. P.; Xiong, Y. Theoretical Studies on Densities, Stability and Detonation Properties of 2D Polymeric Complexes Cu(DAT)2Cl2 and its New Analogues Zn(DAT)2Cl2. J. Mol. Model. 2013, 19(4): 1583-1590.
  • [31] Politzer, P.; Murray, J. S. Some Perspectives on Estimating Detonation Properties of C, H, N, O Compounds, Cent. Eur. J. Energ. Mater. 2011, 8(3): 209-220.
  • [32] Politzer, P.; Murray, J. S.; Grice, M. E.; Desalvo, M.; Miller, E. Calculation of Heats of Sublimation and Solid Phase Heats of Formation. Mol. Phys. 1997, 91(5): 923-928.
  • [33] Byrd, E. F. C.; Rice, B. M. Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations. J. Phys. Chem. A 2006, 110(3): 1005-1013.
  • [34] Owens, F. J. Calculation of Energy Barriers for Bond Rupture in Some Energetic Molecules. J. Mol. Struct. (THEOCHEM) 1996, 370(1): 11-16.
  • [35] Song, X. S.; Cheng, X. L.; Yang, X. D.; Li, D. H.; Feng, R.; Hu, L. Correlation between the Bond Dissociation Energies and Impact Sensitivities in Nitramine and Polynitro Benzoate Molecules with Polynitro Alkyl Groupings. J. Hazard. Mater.2007, 150(2): 317-321.
  • [36] Li, J. S. Relationships for the Impact Sensitivities of Energetic C-nitro Compounds Based on Bond Dissociation Energy. J. Phys. Chem. B 2010, 114(6): 2189-2202.
  • [37] Li, X. H.; Zhang, R. Z.; Zhang, X. Z. Computational Study of Imidazole Derivatives as High Energetic Materials. J. Hazard. Mater. 2010, 183(1-3): 622-631.
  • [38] Fan, X. W.; Ju, X. H.; Xiao, H. M.; Qiu, L. Theoretical Studies on Heats of Formation, Group Interaction, and Bond Dissociation Energies in Neopentyldifluoroamino Compounds. J. Mol. Struct. (THEOCHEM) 2006, 801(1-3): 55-62.
  • [39] Ravi, P.; Gore, G. M.; Tewari, S. P.; Sikder, A. K. A DFT Study of Aminonitroimidazoles, J. Mol. Model. 2012, 18(2): 597-605.
  • [40] Lin, H.; Chen, P. Y.; Zhu, S. G.; Zhang, L.; Peng, X. H.; Li, K.; Li, H. Z. Theoretical Studies on the Thermodynamic Properties, Density, Detonation Properties, and Pyrolysis Mechanisms of Trinitromethyl-substituted Aminotetrazoole Compounds. J. Mol. Model. 2013, 19(6): 2413-2422.
  • [41] Keshavarz, M. H.; Pouretedal, H. R.; Semnani, A. Novel Correlation for Predicting Impact Sensitivity of Nitrohetero-cyclic Energetic Molecules. J. Hazard. Mater. 2007, 141(3): 803-807.
  • [42] Cao, C.; Gao, S. Two Dominant Factors Influencing the Impact Sensitivities of Nitrobenzenes and Saturated Nitro Compounds, J. Phys. Chem. B 2007, 111: 12399-12402.
  • [43] Keshavarz, M. H. Theoretical Prediction of Electric Spark Sensitivity of Nitroaromatic Energetic Compounds Based on Molecular Structure. J. Hazard. Mater. 2008, 153: 201-206.
  • [44] Keshavarz, M. H. Prediction Method for Specific Impulse Used as Performance Quantity for Explosives. Propellants Explos. Pyrotech. 2008, 33, 360-364.
  • [45] Mader, C. L. Numerical Modeling of Explosives and Propellants, 3rd ed. Boca Raton, FL: CRC Press, 2008; ISBN 9781420052381.
  • [46] Xiao, H. M.; Xu, X. J.; Qiu, L. Theoretical Design for High Energetic Materials, Science Press, Beijing, 2008; ISBN: 9787030203908.
  • [47] Politzer, P.; Murray, J. S. Relationship between Dissociation Energies and Electrostatic Potentials of C–NO2 Bonds: Applications to Impact Sensitivities. J. Mol. Struct. 1996, 376(1-3): 419-424.
  • [48] Politzer, P.; Murray, J. S.; Seminario, J. M.; Lane, P.; Eward, G. M.; Concha, M. C. Computational Characterization of Energetic Materials. J. Mol. Struct. (THEOCHEM) 2001, 573(1-3): 1-10.
  • [49] Zhou, Z.; Parr, R. G. New Measures of Aromaticity: Absolute Hardness and Relative Hardness. J. Am. Chem. Soc. 1989, 111(19): 7371-7379.
  • [50] Dong, H. S.; Zhou, F. F. High Energy Explosives and Correlative Physical Properties. Science Press, Beijing, 1989; ISBN: 7030014472.
  • [51] Hoffmann, R. Symmetry Requirements for Stabilization of One Class of Diradicals. J. Chem. Soc. Dalton Trans. 1969, 5: 240-241.
  • [52] Ju, X. H.; Li, Y. M.; Xiao, H. M. Theoretical Studies on the Heats of Formation and the Interactions among the Difluoroamino Groups in Polydifluoroaminocubanes. J. Phys. Chem. A 2005, 109(5): 934-938.
  • [53] Wei, T.; Zhang J. J.; Zhu W. H.; Zhang X. W.; Xiao H. M. A Comparison of Highlevel Theoretical Methods to Predict the Heats of Formation of Azo Compounds. J. Mol. Struct. (THEOCHEM) 2010, 956(1-3): 55-60.
  • [54] Izaák, D.; Klapötke, T. M. Preparation and Characterization of 1-(5-Azido-1H-1,2,4-triazol-3-yl)tetrazole. Cent. Eur. J. Energ. Mater. 2015, 12(3): 403-416.
  • [55] Rice, B. M.; Hare, J. J. A Quantum Mechanical Investigation of the Relation between Impact Sensitivity and the Charge Distribution in Energetic Molecules. J. Phys. Chem. A 2002, 106: 1770-1783.
  • [56] Zohari, N.; Keshvarz, M. H.; Seyedsadjadi, S. A. Some High Nitrogen Derivatives of Nitrotetrazolylimidazole as New High Performance Energetic Compounds. Cent. Eur. J. Energ. Mater. 2014, 11(3): 349-362.
  • [57] Damavarapu, R.; Surapaneni, R. C.; Gelbel, N.; Duddu, R.; Zhang, M.; Dave, P. R. Melt-cast Explosives Materials. Patent US 7 304 164, 2007.
  • [58] Keshavarz, M. H.; Pouretedal H. R. Predicting the Detonation Velocity of CHNO Explosives by a Simple Method. Propellants Explos. Pyrotech. 2005, 30(2):105-108.
  • [59] Kuo, K. K.; Acharya, R. Applications of Turbulent and Multi-Phase Combustion. Wiley, 2012, pp. 52; ISBN: 1118127560.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f761baa-a36c-442b-95b3-eeb0393d3e6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.