PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital image correlation (DIC) based stereo matching method for binocular structured light system (BSLS)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the advantages of non-contact, quick and high accuracy, binocular stereo vision technology is popular in the fields of industrial inspection and measurement. To improve the result of stereo matching, phase consistency constrain based on the fringe projection profilometry (FPP) is performed. The phase unwrapping is generally employed to avoid the phase ambiguity, which is unrobust or time consuming. Aiming at this problem, a digital image correlation (DIC) assisted phase consistency method is proposed to achieve stereo matching with high accuracy, only three fringe patterns and one digital speckle pattern are needed. Two-step strategy is performed to get the homonymy points. The epipolar constraint and DIC algorithm can get the matching with pixel level, and then the wrapping consistency constraint is used to get a sub-pixel matching. To improve the matching accuracy, the Hilbert transform is employed to compensate the phase nonlinear error. As to the regions with low modulation, the disparity refinement algorithm based on neighboring disparity constrain is performed. The experiment results show that the reconstruction accuracy of proposed method is comparative with the multi-step phase shift plus multi-frequency heterodyne method.
Czasopismo
Rocznik
Strony
77--95
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
  • Engineering Research Center of Digital Imaging and Display, Ministry of Education, Soochow University, Suzhou 215006, China
autor
  • Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
autor
  • Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
autor
  • Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
autor
  • Engineering Research Center of Digital Imaging and Display, Ministry of Education, Soochow University, Suzhou 215006, China
autor
  • Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
Bibliografia
  • [1] YANG S., WU G., WU Y., YAN J., LUO H., ZHANG Y., LIU F., High-accuracy high-speed unconstrained fringe projection profilometry of 3D measurement, Optics & Laser Technology 125, 2020: 106063. https://doi.org/10.1016/j.optlastec.2020.106063
  • [2] ZHANG S., Absolute phase retrieval methods for digital fringe projection profilometry: A review, Optics and Lasers in Engineering 107, 2018: 28-37. https://doi.org/10.1016/j.optlaseng.2018.03.003
  • [3] ZHANG H., ZHANG Q., LI Y., LIU Y., High speed 3D shape measurement with temporal Fourier transform profilometry, Applied Sciences 9(19), 2019: 4123. https://doi.org/10.3390/app9194123
  • [4] ZHANG S., Comparing Hilbert transform profilometry and Fourier transform profilometry (Conference Presentation), Proceedings of the SPIE, Vol. 10991, Dimensional Optical Metrology and Inspection for Practical Applications VIII, 2019: 1099107. https://doi.org/10.1117/12.2517870
  • [5] ZUO C., FENG S., HUANG L., TAO T., YIN W., CHEN Q., Phase shifting algorithms for fringe projection profilometry: A review, Optics and Lasers in Engineering 109, 2018: 23-59. https://doi.org/10.1016/j.optlaseng.2018.04.019
  • [6] YUAN H., LI Y., ZHAO J., ZHANG L., LI W., HUANG Y., GAO X., XIE Q., An adaptive fringe projection method for 3D measurement with high-reflective surfaces, Optics & Laser Technology 170 2024: 110062. https://doi.org/10.1016/j.optlastec.2023.110062
  • [7] XU J., ZHANG S., Status, challenges, and future perspectives of fringe projection profilometry, Optics and Lasers in Engineering 135, 2020: 106193. https://doi.org/10.1016/j.optlaseng.2020.106193
  • [8] WU K., LI M., LU L., XI J., Reconstruction of isolated moving objects by motion-induced phase shift based on PSP, Applied Sciences 12(1), 2022: 252. https://doi.org/10.3390/app12010252
  • [9] SU X., CHEN W., Reliability-guided phase unwrapping algorithm: A review, Optics and Lasers in Engineering 42(3), 2004: 245-261. https://doi.org/10.1016/j.optlaseng.2003.11.002
  • [10] HE X., KEMAO Q., A comparative study on temporal phase unwrapping methods in high-speed fringe projection profilometry, Optics and Lasers in Engineering 142, 2021: 106613. https://doi.org/10.1016/j.optlaseng.2021.106613
  • [11] WU Z., GUO W., LI Y., LIU Y., ZHANG Q., High-speed and high-efficiency three-dimensional shape measurement based on Gray-coded light, Photonics Research 8(6), 2020: 819-829. https://doi.org/10.1364/PRJ.389076
  • [12] TOWERS C.E., TOWERS D.P., JONES J.D.C., Absolute fringe order calculation using optimised multi-frequency selection in full-field profilometry, Optics and Lasers in Engineering 43(7), 2005: 788-800. https://doi.org/10.1016/j.optlaseng.2004.08.005
  • [13] MA Z., LU Z., LI Y., DAI Y., Multi-frequency fringe projection profilometry: Phase error suppression based on cycle count adjustment, Applied Sciences 13(8), 2023: 5117. https://doi.org/10.3390/ app13085117
  • [14] LIU J., SHAN S., XU P., ZHANG W., LI Z., WANG J., XIE J., Improved two-frequency temporal phase unwrapping method in fringe projection profilometry, Applied Physics B 130, 2024: 42. https:// doi.org/10.1007/s00340-024-08183-3
  • [15] ZHOU Y., SUN C., CHEN J., Adaptive subset offset for systematic error reduction in incremental digital image correlation, Optics and Lasers in Engineering 55, 2014: 5-11. https://doi.org/10.1016/j.optlaseng.2013.10.014
  • [16] LIN Y., HUANG P., NI Z., XIE S., BAI Y., DONG B., Full-field vibration measurements by using high-speed two-dimensional digital image correlation, Applied Sciences 13(7), 2023: 4257. https://doi.org/10.3390/app13074257
  • [17] HAGARA M., HUŇADY R., LENGVARSKÝ P., VOCETKA M., PALIČKA P., The calibration process and setting of image brightness to achieve optimum strain measurement accuracy using stereo-camera digital image correlation, Applied Sciences 13(17), 2023: 9512. https://doi.org/10.3390/app13179512
  • [18] LOHRY W., CHEN V., ZHANG S., Absolute three-dimensional shape measurement using coded fringe patterns without phase unwrapping or projector calibration, Optics Express 22(2), 2014: 1287-1301. https://doi.org/10.1364/OE.22.001287
  • [19] YIN W., FENG S., TAO T., HUANG L., TRUSIAK M., CHEN Q., ZUO C., High-speed 3D shape measurement using the optimized composite fringe patterns and stereo-assisted structured light system, Optics Express 27(3), 2019: 2411-2431. https://doi.org/10.1364/OE.27.002411
  • [20] DENG H., LING X., WANG Y., YAO P., MA M., ZHONG X., High-speed and high-accuracy fringe projection profilometry without phase unwrapping, Optics and Lasers in Engineering 140, 2021: 106518. https://doi.org/10.1016/j.optlaseng.2020.106518
  • [21] GAI S., DA F., DAI X., Novel 3D measurement system based on speckle and fringe pattern projection, Optics Express 24(16), 2016: 17686-17697. https://doi.org/10.1364/OE.24.017686
  • [22] FU K., XIE Y., JING H., ZHU J., Fast spatial–temporal stereo matching for 3D face reconstruction under speckle pattern projection, Image and Vision Computing 85, 2019: 36-45. https://doi.org/10.1016/j.imavis.2019.02.007
  • [23] HU P., YANG S., ZHANG G., DENG H., High-speed and accurate 3D shape measurement using DIC-assisted phase matching and triple-scanning, Optics and Lasers in Engineering 147, 2021: 106725. https://doi.org/10.1016/j.optlaseng.2021.106725
  • [24] LIAO Y.H., XU M., ZHANG S., Digital image correlation assisted absolute phase unwrapping, Optics Express 30(18), 2022: 33022-33034. https://doi.org/10.1364/OE.470704
  • [25] ZHONG K., LI Z., SHI Y., WANG C., LEI Y., Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping, Optics and Lasers in Engineering 51(11), 2013: 1213-1222. https://doi.org/10.1016/j.optlaseng.2013.04.016
  • [26] ZHANG J., GUO W., WU Z., ZHANG Q., Three-dimensional shape measurement based on speckle-embedded fringe patterns and wrapped phase-to-height lookup table, Optical Review 28, 2021: 227-238. https://doi.org/10.1007/s10043-021-00653-9
  • [27] AN Y., ZHANG S., Three-dimensional absolute shape measurement by combining binary statistical pattern matching with phase-shifting methods, Applied Optics 56(19), 2017: 5418-5426. https://doi.org/10.1364/AO.56.005418
  • [28] FENG S., CHEN Q., ZUO C., ASUNDI A., Fast three-dimensional measurements for dynamic scenes with shiny surfaces, Optics Communications 382, 2017: 18-27. https://doi.org/10.1016/j.optcom. 2016.07.057
  • [29] CAI Z., LIU X., JIANG H., HE D., PENG X., HUANG S., ZHANG Z., Flexible phase error compensation based on Hilbert transform in phase shifting profilometry, Optics Express 23(19), 2015: 25171-25181. https://doi.org/10.1364/OE.23.025171
  • [30] LI W., ZHANG Z., JIANG Z., GAO X., TAN Z., WANG H., A RANSAC based phase noise filtering method for the camera-projector calibration system, Optoelectronics Letters 18, 2022: 618-622. https://doi.org/10.1007/s11801-022-2045-2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f738840-76d7-44a0-a7b1-88641cf8c197
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.