Identyfikatory
Warianty tytułu
Opracowanie inteligentnego modelu dla rozpoznania konstrukcji kształtu bioder
Języki publikacji
Abstrakty
The purpose of this paper was to develop an intelligent recognition system consisting of a feature reduction method combining cluster and correlation analyses, and a probabilistic neural network (PNN) classifier to identify different types of hip shape from 3D measurement for each person. Firstly 28 items reflecting lower body part information of 300 female university students aging from 20 to 24 years were selected. The feature reduction method was employed to extract typical indices. Secondly hip shapes were subdivided into five types by a K-means cluster and analysis of variance (ANOVA). Finally the PNN was then trained to serve as a classifier for identifying five different hip shape types. The average classification accuracy of the scheme proposed was 97.37%, and its effectiveness was successfully validated by comparing with the BP and Support Vector Machine (SVM) scheme. Thus an intelligent recognition system was developed to make hip shape type classification of high-precision and time saving.
Model łączy analizę skupień i korelacji oraz probabilistyczną sztuczną sieć neuronową dla identyfikacji różnych typów kształtów bioder opartą o pomiary 3D poszczególnych osób. Wyselekcjonowano 28 przypadków odzwierciedlających dolną część sylwetki 300 studentek w wieku od 20 do 24 lat. Zastosowano metodę redukcji poszczególnych właściwości dla wybrania typowych wskaźników. Następnie kształt bioder podzielono na 5 typów za pomocą algorytmu klastrowego i systemu ANOVA (analiza wariancji). Następnie przeprowadzono trening sieci neuronowej aby mogła posłużyć jako klasyfikator identyfikacji 5 różnych kształtów bioder. Przeciętna dokładność klasyfikacji proponowanego systemu wynosiła 97,37%, a efektywność była sukcesywnie sprawdzana przez porównanie schematów BP i SVM. W ten sposób stworzono inteligentny system rozpoznania typu kształtu bioder o dużej precyzji, pozwalający na oszczędność czasu.
Czasopismo
Rocznik
Strony
110--118
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Fashion Institute, Zhejiang Sci-Tech University (ZSTU), Hangzhou, P. R. China
autor
autor
- Fashion Institute, Zhejiang Sci-Tech University (ZSTU), Hangzhou, P. R. China
Bibliografia
- 1. Hsu CH. Developing accurate industrial standards to facilitate production in apparel manufacturing based on anthropometric data. Human Factors and Ergonomics in Manufacturing & Service Industries 2009; 19(3):199-211.
- 2. Choi YL and Nam YJ. Classifcation of upper lateral body shapes for the apparel industry. Human Factors Ergonomics Manufacture& Service Industries 2010; 20(5): 378-390.
- 3. Vuruskan A and Bulgun E. Identifcation of female body shapes based on numerical evaluations. International Journal of Clothing Science and Technology 2011; 23(1): 46-60.
- 4. Zheng R, Yu W and Fan JT. Development of a new Chinese bra sizing system based on breast anthropometric measurements. International Journal of Industrial Ergonomics 2007; 37(8): 697-705.
- 5. Lee WY and Imalka H. Classifcation of body shape characteristics of women’s torsos using angles. International Journal of Clothing Science and Technology 2010; 22(4): 297-311.
- 6. Armstrong HJ. Pattern making for fashion design (5th Edition), New York: Harper Collins.
- 7. Nam YJ. A study on classifcation of somatotype based on the lateral view of women’s upper body. Unpublished doctoral dissertation, Seoul National University, Seoul, Korea. 1991.
- 8. Kim SA and Choi HS. Upper body somatotype classifcation and discrimination of elderly women according to index. Journal of the Korean Society of Clothing and Textiles 2004; 28(7): 983-994.
- 9. Na HS. Classifcation of side somatotype of upper lateral torso analyzing 3D body scan image of American females. Journal of Korean Society of Costume 2007; 57(4): 9-17.
- 10. Konar A. Computational Intelligence: Principles, Techniques, Springer, Berlin, 2005.
- 11. Wang XF and Huang DS. A novel density-based clustering framework by using level set method. IEEE Transactions on knowledge and data engineering 2009; 21(11): 1515-1531.
- 12. Huang DS. A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Transactions on neural networks 2008; 19(12): 2099-2115.
- 13. Chen Y, Zeng XY, Happette M and Bruniaux P. A new method of ease allowance generation for personalization of garment design. International Journal of Clothing Science and Technology 2008; 20(3): 161-173.
- 14. Hu ZH, Ding YS, Yu XK, Zhang WB and Yan Q. A hybrid neural network and immune algorithm approach for ft garment design. Textile Research Journal 2009; 79(14): 1319-1330.
- 15. Zou FY, Hu JL, Zhang SJ and Dong JM. Application of neural network to pattern design of young women’s clothing. AUTEX 2007 International conference, Tampere, Finland, 26-28 June, 2007.
- 16. Zou FY, Ding XJ and Zhang SY. Application of neural network to identification of young females′ body type. In ‘Proceedings of the 2006 IEEE International Conference on Systems, Man, and Cybernetics’, Taipei, Taiwan, IEEE, 2006; 2257-2261.
- 17. Gori M and Tesi A. On the problem of local minima in backpropagation. IEEE Transactions pattern analysis and machine intelligence 1992; 14:76-85.
- 18. Zhang SY, Zou FY and Ding XJ. Research on the young women’s body classifcation based on SVM. Journal of Zhejiang Sci-Tech University 2008; 25(1): 41-45.
- 19. Burges CJC. A tutorial on support vector machines for pattern Recognition. Data Mining and Knowledge Discovery 1998; 2: 121-167.
- 20. Revett K, Gorunescu F, Gorunescu M, E-Darzi E and Ene M. A breast cancer diagnosis system: a combined approach using rough sets and probabilistic neural networks. the International conference on Computer as a Tool: Belgrade, Serbia and Montenegro, November 21-24, 2005; 1124-1127.
- 21. Adeli H and Panakkat A. A probabilistic neural network for earthquake magnitude prediction. Neural Networks 2009; 22(7): 1018-1024.
- 22. Kim D, Kim DH and Chang SY. Application of probabilistic neural network to design breakwater armor blocks. Ocean Engineering 2008; 35(3-4): 294-300.
- 23. Mantzaris D, Anastassopoulos G and Adamopoulos A. Genetic algorithm pruning of probabilistic neural networks in medical disease estimation. Neural Networks 2011; 24(8): 831-835.
- 24. Shahrabi J, Hadavandi E and Esfandarani MS. Developing a hybrid intelligent model for constructing a size recommendation expert system in textile industries. International Journal of Clothing Science and Technology 2013; 25(5): 338-349.
- 25. Reynolds AP, Richards G, Iglesia B.DE LA. and Rayward-Smith VJ. Clustering Rules: A comparison of partitioning and hierarchical clustering algorithms. Journal of Mathematical Modeling and Algorithms 2006; 5(4): 475-504.
- 26. Duda RO, Hart PE and Stork DG. Pattern classifcation. 2nd ed. Wiley-Inter science, 2000.
- 27. Kovács F, Legány C and Babos A. Cluster Validity Measurement Techniques, in Proceedings of the ffth WSEAS International Conference on Artifcial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, 2006; 388-393.
- 28. Specht DF. Probabilistic neural net-works. Neural Networks 1990; 3: 109-118.
- 29. Forina M, Armanino C, Leardi R and Drava G. A class-modelling technique based on potential functions. Journal of Chemometrics 1991; 5(5): 435-453.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f708f39-a5fc-41f8-ac9f-7a02f1498212