Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Projektowanie i badanie komputerowego modelu turbiny wiatrowej z wykorzystaniem LabVIEW
Języki publikacji
Abstrakty
The issues of wind flow modeling and wind turbine electromechanics are of great interest. The work concerns the design and testing of a wind turbine model. The results of the study of the electro-mechanical dynamics of the system were developed using the LabVIEW software. The developed computer model of the wind turbine enables the study of its dynamics with stochastic changes in wind speed.
Problematyka modelowania przepływu wiatru i elektromechaniki turbiny wiatrowej cieszy się dużym zainteresowaniem. Praca dotyczy projektowania i badana modelu turbiny wiatrowej. Wyniki badań dynamiki elektryczno-mechanicznego układu opracowano za pomocą oprogramowania LabVIEW. Opracowany model komputerowy turbiny wiatrowej umożliwia prowadzenie badań jej dynamiki przy stochastycznej zmianie prędkości wiatru.
Wydawca
Czasopismo
Rocznik
Tom
Strony
281--285
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
- Lviv National Environmental University, Faculty of Mechanics, Energy and Information Technologies, Vol. Velykogo str., 1, 80381, Dubliany-Lviv, Ukraine
autor
- Lviv National Environmental University, Faculty of Mechanics, Energy and Information Technologies, Vol. Velykogo str., 1, 80381, Dubliany-Lviv, Ukraine
autor
- Lviv National Environmental University, Faculty of Mechanics, Energy and Information Technologies, Vol. Velykogo str., 1, 80381, Dubliany-Lviv, Ukraine
autor
- Lviv National Environmental University, Faculty of Mechanics, Energy and Information Technologies, Vol. Velykogo str., 1, 80381, Dubliany-Lviv, Ukraine
autor
- Lviv National Environmental University, Faculty of Mechanics, Energy and Information Technologies, Vol. Velykogo str., 1, 80381, Dubliany-Lviv, Ukraine
autor
- Lviv National Environmental University, Faculty of Mechanics, Energy and Information Technologies, Vol. Velykogo str., 1, 80381, Dubliany-Lviv, Ukraine
autor
- Lviv National Environmental University, Faculty of Management, Economics and Law, Vol. Velykogo str., 1, 80381, Dubliany-Lviv, Ukraine
autor
- Lviv Polytechniс National University, Institute of Geodesy, 6 Karpinskoho str., 79013, Lviv, Ukraine
autor
- University of Agriculture in Krakow, Faculty of Production and Power Engineering, Al. Mickiewicza 21, 31-120 Krakow, Poland
autor
- University of Agriculture in Krakow, Faculty of Production and Power Engineering, Al. Mickiewicza 21, 31-120 Krakow, Poland
autor
- University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, Al. Mickiewicza 21, 31-120 Krakow, Poland
Bibliografia
- [1] Giełżecki J., Jakubowski T. The Simulation of Temperature Distribution in a Ground Heat Exchanger-GHE Using the Autodesk CFD Simulation Program, 4th International Conference on Renewable Energy Sources (ICORES), (2018)
- [2] Johnson B., Pike G.E., Preparation of Papers for Transactions, IEEE Trans. Magn., 50 (2002), No. 5, 133-137
- [1] Koley I., Dey S., Sain C., Matlab modeling and simulation of DFIG with dump resistor during faulty condition, International Journal of Engineering Inventions, 4 (2014), 1, 11–17
- [2] Mozafarpoor-Khoshrodi S.-H., Shahgholian G., Improvement of perturb and observe method for maximum power point tracking in wind energy conversion system using fuzzy controller, Energy Equipment and Systems, 4 (2016), No 2, 111–122
- [3] Oleynikov A., Matveev Yu., Kanov L., Modeling of a low-power wind plant mode, Electrical Engineering & Electromechanics, (2010), No 2, 16–20
- [4] Ayhan D., Saglam S., A technical review of building-mounted wind power systems and a sample simulation model, Renewable and Sustainable Energy Reviews, 16 (2012), 1040– 1049
- [5] Beltran B., Ahmed-Ali T., El Hachemi Benbouzid M., Sliding mode power control of variable-speed wind energy conversion systems, IEEE Transactions on energy conversion, 23 (2008), No. 2, 551–558
- [6] Hansen A., Jauch C., Sorensen P., Iov F., Blaabjerg F., Dynamic wind turbine models in power system simulation tool DIgSILENT, Roskilde: Rise National Laboratory, (2003)
- [7] Singh M., Santoso S., Dynamic models for wind turbines and wind power plants, Golden: National Renewable Energy Laboratory, (2011)
- [8] El-Fouly T., El-Saadany E., Salama M., One day ahead prediction of wind speed using annual trends, IEEE Power Engineering Society General Meeting, (2006), 1–7
- [9] Foley A., Leahy P., Marvuglia A., McKeogh E., Current methods and advances in forecasting of wind power generation, Renewable Energy, 37 (2012), 1–8
- [10] Neammanee B., Sirisumrannukul S., Chatratana S., Development of a wind turbine simulator for wind generator testing, Internatoinal energy journal, (2007), No 8, 21–28
- [11] Kumar D., Chatterjee K., A review of conventional and advanced MPPT algorithms for wind energy systems, Renewable and Sustainable Energy Reviews, 55 (2016), 957– 970
- [12] Eisenhut C., Krug F., Eisenhut C., Wind-turbine model for system simulations near cut-in wind speed, IEEE Trans. on Energy Conversion, 22 (2007), No. 2, 414–420
- [13] Subota A., Dybska I., Zabolotniy O., Control system of wind driven power plant, Radioelectronic and Computer Systems, 37 (2009), No 3, 61–67
- [14] Lozynsky A., Shchur V., Control system for wind turbine based on fuzzy logic controller in view of aerodynamic changes of wind rotor parameters, Electromechanical and energy saving systems, 31 (2015), No. 3, 10–21
- [15] Shchur V., Mathematical model of turbulent wind flow for computer and physical modeling of wind turbines, Electromechanical and energy systems, methods of modeling and optimization, (2012), 199–200
- [16] Bianchi F., Battista H., Mantz R., Wind turbine control systems: principles, modelling and gain scheduling design, London: Springer, (2007)
- [17] Anaya-Lara O., Jenkins N., Ekanayake J., Cartwright P., Hughes M., Wind energy generation: modelling and control, West Sussex: Wiley, (2009)
- [18] Syrotyuk S., Boyarchuk V., Halchak V., Alternative Energy Sources. Wind energy, Lviv: Magnolia, (2017)
- [19] Nichita C., Luca D., Dayko B., Ceanga E., Large band simulation of the wind speed for real time wind turbine simulators, IEEE Trans. on Energy Conversion, 17 (2002), No. 4, 523–529
- [20] Tankari M., Camara M., Dakyo B., Nichita C., Wind power integration in hybrid power system with active energy management, International Journal of Computations and Mathematics in Electrical, 30 (2011), No 1, 1–6
- [21] Babazadeh H., Gao W., Cheng L., Lin J., An hour ahead wind speed prediction by Kalman filter, Power Electronics and Machines in Wind Applications, (2012), 1–6
- [22] Nichita C., Luca D., Dakyo B., Ceanga E., Cutululis N., Modelling non-stationary wind speed for renewablwe energy systems control, The Annals of Dunarea de JOS: Electrotechnics Electronics Automatic Control and Informatics, (2001), 29–34
- [23] Carta J., A continuous bivariate model for wind power density and wind turbine energy output estimations, Energy Conversion and Management, 48 (2007), 420–432
- [24] Lange M., Focken U., Physical approach to short-term wind power prediction, New York: Springer, (2005)
- [25] Xin L., Bin L., Jianyuan X., Yun T., A novel power predicting model of wind farm based on double ANNs, Power and Energy Engineering Conference, (2010), 1–4
- [26] Jaehnert S., Aigner T., Doorman G., Gjengedal T., Impact of large scale wind integration on power system balancing, Power Tech IEEE Trondheim, (2011), 1–6
- [27] Shchur І., Shchur V., Optimal control of wind turbines of different power in turbulent winds, Electrical Power and Electromechanical Systems, (2012), No 736, 146–152
- [28] Syrotiuk V., Boyarchuk V., Vorobkevych V., Syrotyuk S., Halchak V., Furman А., Substantiation of the structure of transmission devices of agricultural wind turbines, Motrol. Motorization and power industry in agriculture, 14 (2012), No 4, 75–83
- [29] Tadeusiewicz R., Tylek P., Adamczyk F., Kiełbasa P., Jabłoński M., Bubliński Z., Grabska-Chrzaştowska J., Kaliniewicz Z., Walczyk J., Szczepaniak J., Juliszewski T., Szaroleta M. Assessment of selected parameters of the automatic scarification device as an example of a device for sustainable forest management. Sustainability, (2017), 9 (12), 2370
- [30] Trzyniec K., Kowalewski A. Use of an artificial neural network to assess the degree of training of an operator of selected devices used in precision agriculture. Energies, (2020), 13(23)
- [31] Mączka M., Effective Simulations of Electronic Transport in 2D Structures Based on Semiconductor Superlattice Infinite Model. Electronics, (2020), 9, 1845. https://doi.org/10.3390/electronics9111845
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f6dbf1c-fced-4a78-96b8-e3998b9af920
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.