Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The behaviour of porous sinters, during compression and compression with reverse cyclic torsion tests is investigated in the article based on the combination of experimental and numerical techniques. The sinters manufactured from the Distaloy AB powder are examined. First, series of simple uniaxial compression tests were performed on samples with three different porosity volume fractions: 15, 20 and 25%. Obtained data were then used during identification procedure of the Gurson-Tvergaard-Needleman finite element based model, which can capture influence of porosity evolution on plasticity. Finally, the identified Gurson-Tvergaard- Needleman model was validated under complex compression with reverse cyclic torsion conditions and proved its good predictive capabilities. Details on both experimental and numerical investigations are presented within the paper.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1937--1942
Opis fizyczny
Bibliogr. 24 poz., fot., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
autor
- Opole University of Technology, 5 S. Mikołajczyka Str., 45-271 Opole, Poland
autor
- Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
Bibliografia
- [1] A. Falkowska, A. Seweryn, A. Tomczyk, Int. J. Fat. 111, 161-176 (2018).
- [2] W.S.W. Harun, M.S.I.N. Kamariah, N. Muhamad, S.A.C. Ghani, F. Ahmad, Z. Mohamed, Powder Technol. 327, 128-151 (2018).
- [3] M. Rosiak, J. Napiórkowski, MATEC Web of Conferences 94 (2017).
- [4] A. Salvadori, S. Lee, A. Gillman, K. Matouš, C. Shuck, A. Mukasyan, M. T. Beason, I. E. Gunduz, S. F. Son, Mech. of Mat. 112, 56-70 (2017).
- [5] A. Kurzawa, D. Pyka, J. Pach, K. Jamroziak, M. Bocian, Proc. Eng. 199, 1495-1500 (2017).
- [6] K. Matouš, M.G.D. Geers, V. G. Kouznetsova, A. Gillman, J. Comput. Phys. 330, 192-220 (2017).
- [7] W. Sobieski, Tech. Sci. 13, 256-265 (2010).
- [8] S. T. Szyniszewski, B. H. Smith, J. F. Hajjar, B. W. Schafer, S. R. Arwade, Mater. Des. 54, 1083-1094 (2014).
- [9] Q. Sawei, Z. Xinna, H. Qingxian, D. Renjun, J. Yan, H. Yuebo, Rare Met. Mat. and Eng. 44, 2670-2676 (2015).
- [10] H. Mehboob, F. Tarlochan, A. Mehboob, S.-H. Chang, Mater. Des. 149, 101-112 (2018).
- [11] W. Yan, J. Berthe, C. Wen, Mater. Des. 32, 1776-1782 (2011).
- [12] T. Ueda, L. Helfen, T.F. Morgeneyer, Acta. Mater. 78, 254-270 (2014).
- [13] Y. Chen, C. Zhang, C. Varé, Comp. Mater. Sci. 128, 229-235 (2017).
- [14] A.L. Gurson, J. Eng. Mater. Technol. 99 (1977).
- [15] V. Tvergaard, A. Needleman, Acta Metall. 32, 157-169 (1984).
- [16] P. Kossakowski, Roads and Bridges 11, 295-310 (2012).
- [17] V. Vijayaraghavan, A. Garg, L. Gao, R. Vijayaraghavan, Metals (Basel) 7, 83 (2017).
- [18] P. J. Sulich, Czasopismo Techniczne. Mechanika 109, 293-309 (2012).
- [19] M. Pietrzyk, Ł. Madej, Ł. Rauch, D. Szeliga, Computational Materials Engineering: Achieving High Accuracy and Efficiency, Elsevier, (2015).
- [20] M. Rosiak, Mechanik 11, 1736-1737 (2016).
- [21] H. Seli, M. Awang, A.I.M. Ismail, E. Rachman, Z.A. Ahmad, Mat. Res. 16, 453-467 (2012).
- [22] H. R. Shanks, A. H. Klein, G. C. Danielson, J. Appl. Phys. 38, 2885-2892 (1967).
- [23] D. Szeliga, J. Gawad, M. Pietrzyk, Comput. Methods. Appl. Mech. Eng. 195, 6778-6798 (2006).
- [24] B. T. Helenbrook, J. Hrdina, Comput. Fluids 167, 40-50 (2018).
Uwagi
EN
Financial assistance provided by the National Science Centre under the 2014/15/B/ST8/00086 project is gratefully acknowledged. This research was supported in part by PLGrid Infrastructure.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f6d6b05-55aa-45af-928b-821b1823f550