Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The three-dimensional magnetohydrodynamic (MHD) boundary layer flow of a Casson fluid over a stretching surface set into a porous medium with variable thermal conductivity and heat generation/absorption has been researched. Conservation laws of mass, momentum and energy are changed into ordinary differential equations, which are numerically dealt with by applying the fourth order Runge-Kutta integration scheme in relationship with shooting procedure. The dimensionless velocity, temperature, skin friction coefficient and the local Nusselt number inside the boundary layer are processed and examined through tables and illustrations for various physical parameters. The numerical outcomes obtained for the specific case are sensible in great concurrence with the existing results. Results indicate that momentum boundary layer reduces for the Hartman number and Casson fluid parameter. Temperature is found as an enlightened function for the heat generation and thermal conductivity parameter.
Rocznik
Tom
Strony
25--36
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, Providence College for Women, Coonoor - 643104, India
autor
- Department of Mathematics, PSG College of Arts and Science, Coimbatore - 641014, India
autor
- Department of Mathematics, SRMV College of Arts and Science, Coimbatore - 641020, India
autor
- Mathematics and its Applications in Life Sciences Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
Bibliografia
- [1] Haldar, S., Mukhopadhyay, S., & Layek, G.C. (2019). Flow and heat transfer of Casson fluid over an exponentially shrinking permeable sheet in presence of exponentially moving free stream with convective boundary condition. Mechanics of Advanced Materials and Structures, 26(17), 1498-1504.
- [2] Sivaraj, R., Jasmine Benazir, A., Srinivas, S., & Chamkha, Ali J. (2019). Investigation of crossdiffusion effects on Casson fluid flow in existence of variable fluid properties. The European Physical Journal Special Topics, 228(1), 35-53.
- [3] Hamid, M., Usman, M., Khan, Z.H., Ahmad, R., & Wang, W. (2019). Dual solutions and stability analysis of flow and heat transfer of Casson fluid over a stretching sheet. Physics Letters A, 383(20), 2400-2408.
- [4] Gireesha, B.J., Archana, M., Mahanthesh, B., & Prasannakumara, B.C. (2019). Exploration of activation energy and binary chemical reaction effects on nano Casson fluid flow with thermal and exponential space-based heat source. Multidiscipline Modeling in Materials and Structures, 15(1), 227-245.
- [5] Satya Narayana, P.V., & Harish Babu, D. (2015). Numerical study of MHD heat and mass transfer of a Jeffrey fluid over a stretching sheet with chemical reaction and thermal radiation. Journal of the Taiwan Institute of Chemical Engineers, 59, 18-25.
- [6] Eid, M.R., Mahny, K.L. (2017). Flow and heat transfer in a porous medium saturated with a Sisko nanofluid over a nonlinearly stretching sheet with heat generation/absorption. Heat Transfer – Asian Research, 47(1), 54-71.
- [7] Indumathi, N., Abdul Hakeem, A.K., Ganga, B., Jayaprakash, R. (2021). Marangoni convection of titanium dioxide/ethylene glycol dusty nanoliquid MHD flow past a flat plate. Advances in Fluid Dynamics. Lecture Notes in Mechanical Engineering, DOI: 10.1007/978-981-15-4308-1_19.
- [8] Tarakaramu, N., & Satya Narayana, P.V. (2021). Influence of heat generation/absorption on 3D magnetohydrodynamic Casson fluid flow over a porous stretching surface. Advances in Fluid Dynamics. Lecture Notes in Mechanical Engineering, DOI: 10.1007/978-981-15-4308-1_30.
- [9] Abdul Hakeem, A.K., Renuka, P., Vishnu Ganesh, N., Kalaivanan, R., & Ganga, B. (2016). Influence of inclined Lorentz forces on boundary layer flow of Casson fluid over an impermeable stretching sheet with heat transfer. Journal of Magnetism and Magnetic Materials, 401, 354-361.
- [10] Eid, M.R., & Mahny, K.L. (2017). Unsteady MHD heat and mass transfer of a non-Newtonian nanofluid flow of a two-phase model over a permeable stretching wall with heat generation/absorption. Advanced Powder Technology, 28(11), 3063-3073.
- [11] Sarojamma, G., Sreelakshmi, K., Krishna Jyothi, P., & Satya Narayana, P.V. (2020). Influence of homogeneous and heterogeneous chemical reactions and variable thermal conductivity on the MHD Maxwell fluid flow due to a surface of variable thickness. Defect and Diffusion Forum, 401, 148-163.
- [12] Kezzar, M., Tabet, I., & Eid, M.R. (2020). A new analytical solution of longitudinal fin with variable heat generation and thermal conductivity using DRA. European Physical Journal Plus, 135, 120, DOI: 10.1140/epjp/s13360-020-00206-0.
- [13] Nawaz, M., Rahila Naz, & Awais, M. (2018). Magnetohydrodynamic axisymmetric flow of Casson fluid with variable thermal conductivity and free stream. Alexandria Engineering Journal, 57(3), 2043-2050.
- [14] Salahuddin, T., Malik, M.Y., Arif Hussain, Bilal S., & Awais M. (2016). Combined effects of variable thermal conductivity and MHD flow on pseudoplastic fluid over a stretching cylinder by using Keller box method, Information Sciences Letters, 5(1), 11-19.
- [15] Pinarbasia, A., Ozalp C., & Duman, S. (2005). Influence of variable thermal conductivity and viscosity for nonisothermal fluid flow, Physics of Fluids, 17, 038109.
- [16] Sekhar, K.R., Thajoddin, S., Reddy, G.V., & Bhaskarudu, P. (2017). Effects of heat source/sink on MHD flow of Casson fluid and heat transfer over an unsteady stretching sheet. International Journal of Innovative Research in Science, Engineering and Technology, 6(5), 7835-7844.
- [17] Vaidya, H., Rajashekhar, C., Manjunatha, G., Prasad, K.V., Makinde O.D., & Sreenadh, S. (2019). Peristaltic motion of non-Newtonian fluid with variable liquid properties in a convectively heated non-uniform tube: Rabinowitsch fluid model. Journal of Enhanced Heat Transfer, 26(3), 277-294.
- [18] Durgaprasad, P., Varma, S.V.K., & Hoque, M.M. (2019). Combined effects of Brownian motion and thermophoresis parameters on three-dimensional (3D) Casson nanofluid flow across the porous layers slendering sheet in a suspension of graphene nanoparticles. Neural Computing & Applications Journal, 31, 6275-6286.
- [19] Raju, C.S.K., Sandeep, N., Ali, M.E., & Nuhait, A.O. (2019). Heat and mass transfer in 3D Williamson-Casson fluids flow over a stretching surface with non-uniform heat source/sink. Thermal Science, 23(1), 281-293.
- [20] Prashu, R.N. (2018). A numerical treatment of unsteady three-dimensional hydromagnetic flow of a Casson fluid with Hall and radiation effects. Results in Physics, 11, 966-974.
- [21] Muhammad, U., Zulqurnain, S., Ali, I., Hafiz, W.A., Muhammad, S., & Muhammad Asif Zahoor, R. (2019). Three-dimensional flow of Casson nanofluid over a stretched sheet with chemical reactions, velocity slip, thermal radiation and Brownian motion. Thermal Science, 339.
- [22] Saeed, A., Shah, Z., Islam, S., Jawad, M., Ullah, A., Gul, T., & Kumam, P. (2019). Threedimensional Casson nanofluid thin film flow over an inclined rotating disk with the impact of heat generation/consumption and thermal radiation. Coatings, 9, 248.
- [23] Prasad, P.D., Saleem, S., & Varma, S.V.K. (2019). Three dimensional slip flow of a chemically reacting Casson fluid flowing over a porous slender sheet with a non-uniform heat source or sink. Journal of the Korean Physical Society, 74(9), 855-864.
- [24] Shehzad, S.A., Hayat, T., & Alsaedi, A. (2016). Three-dimensional MHD flow of Casson fluid in porous medium with heat generation. Journal of Applied Fluid Mechanics, 9(1), 215-223.
- [25] Eid, M.R., Mahny, K.L., Muhammad, T., & Sheikholeslami, M. (2018). Numerical treatment for Carreau nanofluid flow over a porous nonlinear stretching surface. Results in Physics, 8, 1185-1193.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f6942d1-8bc9-4408-9c95-84f8c4453a0e