PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Improved Approach in the Application of an Elastic-Plastic Contact Force Model in the Modelling of Multiple Impacts

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ulepszone podejście do wykorzystania elasto-plastycznego modelu siły kontaktu w modelowaniu zderzenia wielokrotnego
Języki publikacji
EN
Abstrakty
EN
This paper presents the modelling of a simultaneous multiple collision occurring between several bodies of a kinematic chain. An algorithm is proposed that when used with an elastoplastic contact model, allows the phenomena that can occur during a multiple-body collision to be taken into account. These phenomena include the transition of the collision state from the restitution phase directly to the compression phase or successive collisions occurring along the same normal. The proposed algorithm can be used with any elastoplastic contact model. This paper presents its use with a selected model in a three-body system. Numerical calculations based on the model have been verified using the Finite Element Method (FEM). The use of the proposed improved approach reduces the post-collision velocity prediction error by 2.34% compared to the baseline description of collisions known from the literature.
PL
W artykule przedstawiono modelowanie symultanicznego zderzenia wielokrotnego zachodzącego pomiędzy kilkoma ciałami łańcucha kinematycznego. Zaproponowano algorytm, który wykorzystany z elasto-plastycznym modelem kontaktu pozwala na uwzględnienie zjawisk, które mogą wystąpić w trakcie zderzenia wielokrotnego. Do zjawisk tych zaliczyć można przejście stanu zderzenia z fazy restytucji bezpośrednio do fazy kompresji czy też kolejne zderzenia zachodzące wzdłuż tej samej normalnej. Zaproponowany algorytm może zostać wykorzystany z dowolnym, elasto-plastycznym modelem kontaktu. W artykule przedstawiono jego wykorzystanie z wybranym modelem w modelu składającym się z trzech ciał. Obliczenia numeryczne przeprowadzone na podstawie modelu zostały zweryfikowane za pomocą Metody Elementów Skończonych (MES). Zastosowanie zaproponowanego, ulepszonego podejścia pozwala na zmniejszenie błędu przewidywania prędkości po zderzeniu o 2.34% w porównaniu z opisem bazowym zderzenia znanym z literatury.
Czasopismo
Rocznik
Tom
Strony
85--97
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr., wz.
Twórcy
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics
  • West Pomeranian University of Technology in Szczecin, Faculty of Mechanical Engineering and Mechatronics
Bibliografia
  • 1. Michalczyk J., Pakuła S.: Phase control of the transient resonance of the automatic ball balancer, Mech. Syst. Signal Process., vol. 72–73, pp. 254–265, May 2016, doi: 10.1016/j.ymssp.2015.11.001.
  • 2. Cieplok G., Piekaj P.: Movement properties of antiresonance vibration mill with symmetrical Construction, Vib. Phys. Syst., vol. 31, no. 3, pp. 1–11, 2020, doi: 10.21008/J.0860-6897.2020.3.02.
  • 3. Fraternali F., Porter M.A., Daraio C.: Optimal design of composite granular protectors, Mech. Adv. Mater. Struct., vol. 17, no. 1, pp. 1–19, Dec. 2009, doi: 10.1080/15376490802710779.
  • 4. Costa D. et al.: Chaos in impact oscillators not in vain: Dynamics of new mass excited oscillator, Nonlinear Dyn., vol. 102, no. 2, pp. 835–861, Oct. 2020, doi: 10.1007/s11071-020-05644-0.
  • 5. Warzecha M., Michalczyk J.: Calculation of maximal collision force in kinematic chains based on collision force impulse, J. Theor. Appl. Mech., vol. 58, no. 2, pp. 339–349, Apr. 2020, doi: 10.15632/ jtam-pl/116580.
  • 6. Wang T., Zha X., Chen F., Wang J., Li Y., Jiang F.: Mechanical impact test methods for hard coatings of cutting tools: a review, Int. J. Adv. Manuf. Technol., vol. 115, no. 5–6, pp. 1367–1385, Jul. 2021, doi: 10.1007/s00170-021-07219-8.
  • 7. Nguyen N.S., Brogliato B.:, Multiple Impacts in Dissipative Granular Chains, vol. 72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, doi: 10.1007/978-3-642-39298-6.
  • 8. Xie L., Li J., and Liu Y.: Review on charging model of sand particles due to collisions, Theor. Appl. Mech. Lett., vol. 10, no. 4, pp. 276–285, Apr. 2020, doi: 10.1016/j.taml.2020.01.047.
  • 9. Pingle S.M., Fleck N.A., Wadley H.N.G., Deshpande V.S.: Discrete element calculations of the impact of a sand column against rigid structures, Int. J. Impact Eng., vol. 45, pp. 74–89, Jul. 2012, doi: 10.1016/j. ijimpeng.2011.10.005.
  • 10. Zhang Y., Pan G., Zhang Y., Haeri S.: A multi-physics peridynamics-DEM-IB-CLBM framework for the prediction of erosive impact of solid particles in viscous fluids, Comput. Methods Appl. Mech. Eng., vol. 352, pp. 675–690, Aug. 2019, doi: 10.1016/j.cma.2019.04.043.
  • 11. Kakizaki T., Deck J.F., Dubowsky S.: Modeling the spatial dynamics of robotic manipulators with flexible links and joint clearances, J. Mech. Des., vol. 115, no. 4, pp. 839–847, Dec. 1993, doi: 10.1115/1.2919277.
  • 12. Deskiewicz A., Perz R.: Agricultural aircraft wing slat tolerance for bird strike, Aircr. Eng. Aerosp. Technol., vol. 89, no. 4, pp. 590–598, Jul. 2017, doi: 10.1108/AEAT-11-2016-0220.
  • 13. Tenreiro A.F.G., Silva C.M., Lopes A.M., Nunes P.D.P., Carbas R.J.C., da Silva L.F. M.: Design of a new pneumatic impact actuator of a Split Hopkinson Pressure Bar (SHPB) setup for tensile and compression testing of structural adhesives, Mech. Mach. Theory, vol. 159, p. 104289, May 2021, doi: 10.1016/j.mechmachtheory.2021.104289.
  • 14. Jastrzębski D., Perz R.: Rib kinematics analysis in oblique and lateral impact tests, Acta Bioeng. Biomech., vol. 22, no. 1, 2020, doi: 10.37190/ABB-01431-2019-03.
  • 15. Bae D.-M., Prabowo A.R., Cao B., Zakki A.F., Gunawan D.H.: Study on collision between two ships using selected parameters in collision simulation, J. Mar. Sci. Apl., vol. 15, no. 1, pp. 63–72, Mar. 2016, doi: 10.1007/s11804-016-1341-2.
  • 16. Hagiwara K., Takanabe H., Kawano H.: A proposed method of predicting ship collision damage, Int. J. Impact Eng., vol. 1, no. 3, pp. 257–279, 1983, doi: 10.1016/0734-743X(83)90022-2.
  • 17. Flores P.: Contact mechanics for dynamical systems: a comprehensive review, Multibody Syst. Dyn., vol. 54, no. 2, pp. 127–177, Feb. 2022, doi: 10.1007/s11044-021-09803-y.
  • 18. Ghaednia H., Marghitu D.B., Jackson R. L.: Predicting the permanent deformation after the impact of a rod with a flat surface, J. Tribol., vol. 137, p. 011403, Oct. 2014, doi: 10.1115/1.4028709.
  • 19. Daraio C., Nesterenko V.F.: Strongly nonlinear wave dynamics in a chain of polymer coated beads, Phys. Rev. E, vol. 73, no. 2, p. 026612, Feb. 2006, doi: 10.1103/PhysRevE.73.026612.
  • 20. Gharib M., Celik A., Hurmuzlu Y.: Shock absorption using linear particle chains with multiple impacts, J. Appl. Mech., vol. 78, p. 031005, Feb. 2011, doi: 10.1115/1.4003349.
  • 21. Pal R.K., Awasthi A.P., Geubelle P.H.: Characterisation of wave propagation in elastic and elastoplastic granular chains, Phys. Rev. E, vol. 89, no. 1, p. 012204, Jan. 2014, doi: 10.1103/PhysRevE.89.012204.
  • 22. Burgoyne H.A., Daraioand C.: Elastic–plastic wave propagation in uniform and periodic granular chains, J. Appl. Mech., vol. 82, no. 8, p. 081002, Aug. 2015, doi: 10.1115/1.4030458.
  • 23. Daraio C., Nesterenko V.F., Herbold E.B. Jin S.: Energy trapping and shock disintegration in a composite granular medium, Phys. Rev. Lett., vol. 96, no. 5, p. 058002, Feb. 2006, doi: 10.1103/ PhysRevLett.96.058002.
  • 24. Jackson R.L., Green I., Marghitu D.B.: Predicting the coefficient of restitution of impacting elasticperfectly plastic spheres, Nonlinear Dyn., vol. 60, no. 3, pp. 217–229, May 2010, doi: 10.1007/s11071- 009-9591-z.
  • 25. Wang H., Yin X., Hao H., Chen W., Yu B.: The correlation of theoretical contact models for normal elastic-plastic impacts, Int. J. Solids Struct., vol. 182–183, pp. 15–33, Jan. 2020, doi: 10.1016/j. ijsolstr.2019.07.018.
  • 26. Ghaednia H., Wang X., Saha S., Xu Y., Sharma A., and Jackson R.L.: A review of elastic–plastic contact mechanics, Appl. Mech. Rev., vol. 69, no. 6, p. 060804, Nov. 2017, doi: 10.1115/1.4038187.
  • 27. Kogut L., Etsion I.: Elastic-plastic contact analysis of a sphere and a rigid flat, J. Appl. Mech., vol. 69, no. 5, pp. 657–662, Sep. 2002, doi: 10.1115/1.1490373.
  • 28. Etsion I., Kligerman Y., KadinY.: Unloading of an elastic–plastic loaded spherical contact, Int. J. Solids Struct., vol. 42, no. 13, pp. 3716–3729, Jun. 2005, doi: 10.1016/j.ijsolstr.2004.12.006.
  • 29. Du Y., Wang S.: Energy dissipation in normal elastoplastic impact between two spheres., J. Appl. Mech., vol. 76, no. 6, p. 061010, Nov. 2009, doi: 10.1115/1.3130801.
  • 30. Brake M.R.: An analytical elastic-perfectly plastic contact model, Int. J. Solids Struct., vol. 49, no. 22, pp. 3129–3141, Nov. 2012, doi: 10.1016/j.ijsolstr.2012.06.013.
  • 31. Deng Q., Yin X.: A comparative study on indentation and flattening contacts, in Proceedings of the 8th International Conference on Fracture, Fatigue and Wear, Singapore: Springer, 2021. Online. Available from: https://doi.org/10.1007/978-981-15-9893-7_4.
  • 32. Brutti C.: A theoretical model for elastic-perfectly plastic flat cylindrical punch indentation, Mech. Mater., vol. 155, p. 103770, Apr. 2021, doi: 10.1016/j.mechmat.2021.103770.
  • 33. Ghaednia H., Mifflin G., Lunia P., ONeill E.O., Brake M.R.W.: Strain hardening from elastic-perfectly plastic to perfectly elastic indentation single asperity contact, Front. Mech. Eng., vol. 6, p. 60, Aug. 2020, doi: 10.3389/fmech.2020.00060.
  • 34. Lee A., Komvopoulos K.: Dynamic spherical indentation of elastic-plastic solids, Int. J. Solids Struct., vol. 146, pp. 180–191, Aug. 2018, doi: 10.1016/j.ijsolstr.2018.03.028.
  • 35. Abirov R. A., Khusanov B.E., Sagdullaeva D.A., Numerical modeling of the problem of indentation of elastic and elastic-plastic massive bodies, IOP Conf. Ser. Mater. Sci. Eng., vol. 971, p. 032017, Dec. 2020, doi: 10.1088/1757-899x/971/3/032017.
  • 36. Electricité de France, Finite element code_aster, Analysis of Structures and Thermomechanics for Studies and Research, 1989.
  • 37. Geuzaine C., RemacleJ.-F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and postprocessing facilities: THE GMSH PAPER, Int. J. Numer. Methods Eng., vol. 79, no. 11, pp. 1309–1331, Sep. 2009, doi: 10.1002/nme.2579.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f66a31f-1b72-4560-95b6-d113a4327697
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.