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AN IMPROVED APPROACH IN THE APPLICATION  
OF AN ELASTIC-PLASTIC CONTACT FORCE MODEL  
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Abstract: 		  This paper presents the modelling of a simultaneous multiple collision occurring between several bodies of 
a kinematic chain. An algorithm is proposed that when used with an elastoplastic contact model, allows the 
phenomena that can occur during a multiple-body collision to be taken into account. These phenomena include 
the transition of the collision state from the restitution phase directly to the compression phase or successive 
collisions occurring along the same normal. The proposed algorithm can be used with any elastoplastic contact 
model. This paper presents its use with a selected model in a three-body system.  Numerical calculations based 
on the model have been verified using the Finite Element Method (FEM). The use of the proposed improved 
approach reduces the post-collision velocity prediction error by 2.34% compared to the baseline description 
of collisions known from the literature.

Słowa kluczowe: 	 zderzenie wielokrotne, układ wieloczłonowy, kontakt sprężysto-plastyczny, model siły kontaktowej, Metoda 
Elementów Skończonych

Streszczenie: 		  W artykule przedstawiono modelowanie symultanicznego zderzenia wielokrotnego zachodzącego pomiędzy 
kilkoma ciałami łańcucha kinematycznego. Zaproponowano algorytm, który wykorzystany z elasto-pla-
stycznym modelem kontaktu pozwala na uwzględnienie zjawisk, które mogą wystąpić w trakcie zderzenia 
wielokrotnego. Do zjawisk tych zaliczyć można przejście stanu zderzenia z fazy restytucji bezpośrednio do 
fazy kompresji czy też kolejne zderzenia zachodzące wzdłuż tej samej normalnej. Zaproponowany algorytm 
może zostać wykorzystany z dowolnym, elasto-plastycznym modelem kontaktu. W artykule przedstawiono 
jego wykorzystanie z wybranym modelem w modelu składającym się z trzech ciał.  Obliczenia numeryczne 
przeprowadzone na podstawie modelu zostały zweryfikowane za pomocą Metody Elementów Skończonych 
(MES). Zastosowanie zaproponowanego, ulepszonego podejścia pozwala na zmniejszenie błędu przewidy-
wania prędkości po zderzeniu o 2.34% w porównaniu z opisem bazowym zderzenia znanym z literatury.
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INTRODUCTION

Multiple impacts are observed in various systems. 
Especially interesting from an engineering 
perspective are multi-body systems (MBS). 
Examples of such systems are automatic ball 
balancers [L. 1], vibration mills [L. 2], composite 

granular protectors [L. 3], impact oscillators [L. 4] 
or hammer crushers [L. 5]. Furthermore, multiple 
impacts can be used for hard coating testing  
[L. 6], occur in dissipative granular chains [L. 7], 
during discrete element (DEM) simulations of sand  
[L. 8, 9], or multi-physical simulations that predict 
erosive impacts of solid particles in viscous fluids 
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[L. 10]. Collisions are omnipresent in various 
technical systems ranging from space [L. 11], 
aircraft [L. 12], and material property testing  
[L. 13] to bioengineering and marine [L. 15, 16]. 
Therefore, the study of impact processes can be 
seen as a crucial problem.

When taking into account the time-resolved 
information about an impact, it can be divided into 
two phases: compression and restitution. During 
the compression phase, the relative velocity of the 
impacting bodies decreases until it reaches zero, 
and a restitution phase starts, in which the energy 
stored in local deformation is restored and causes 
the separation of the bodies with rebound velocity. 
In multiple impacts, the next compression phase 
starts along the same impact direction after the 
termination of the previous restitution phase or, 
as is often the case in simultaneous, multi-point 
impacts, even before the restitution phase ends. 
Because of this, modelling multiple impacts is 
a challenging and interesting research field [L. 17].

Elastic-plastic contact force models were used 
to model impact in various studies. Ghaednia et 
al. [L. 18] applied the elastic-plastic contact force 
model to predict permanent deformation resulting 
from the impact of a rod with a flat surface. Other 
articles [L. 19–22] investigated phenomena 
observed in a chain of beads or particles. In those 
studies, elastic-plastic contact models were used to 
provide better insight into wave propagation and 
possible application in shock absorption. Daraio 
et al. [L. 23] also analysed energy trapping in 
a granular medium. The elastic-plastic contact force 
model was also applied to predict the coefficient of 
restitution [L. 24]. A broader overview of elastic-
plastic contact force models and their applications 
can be found in [L. 25, 26].

Elastic-plastic contact force models have 
usually been developed and validated for systems 

consisting of two bodies. Their application to 
more complex systems, where simultaneous, 
multiple collisions can occur, poses a challenge 
and results in phenomena that have not been 
studied well. In recognising this gap, the present 
article attempts to identify behaviour specific to 
such systems and proposes an enhancement to 
elastic-plastic contact force models. The remainder 
of this paper is organised as follows. Section 2 
defines in more detail the investigated problem and 
describes the methodology. Section 3 proposes an 
algorithm to enhance elastic-plastic contact force 
models. Section 4 presents results achieved by the 
application of the proposed algorithm to one of the 
selected models, provides a comparison with data 
obtained from the FEM (Finite Element Method) 
model, and offers a discussion, while Section 5 
concludes the article.

PROBLEM DEFINITION  
AND METHODOLOGY

The deformation of bodies that occurs in the 
vicinity of the contact point is usually divided 
into fully elastic, elastic-plastic, and fully plastic. 
Contact force models typically define separate laws 
for each of these regions and differentiate between 
the loading and unloading phases. Although these 
laws are different for various contact force models, 
the idea of switching the equations between phases 
is similar for all models. Therefore, without a lack 
of generality, we demonstrate the improvement 
proposed in this article using the Kogut and 
Etsion (KE) model as an example [L. 27, 28]. The 
developed approach can be applied analogously to 
other models.

The following equations define the KE model:
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where: Fn – normal contact force [N], Fnm – normal 
contact force at the instant when unloading starts 
[N], Fny – normal contact force at the instant when 
the yield starts, defined by equation (5) [N], δ and δ 
– deformation [m] and velocity [m/s] of contacting 
bodies, δ* – deformation normalised by deformation 
at the instant when the yield starts, defined by 
equation (10)  [-], δm – deformation at the instant 
when unloading starts [m] and δm deformation at 
the instant when unloading starts normalised by 
deformation at the instant when yield starts [-], δy 
– deformation at the instant when the yield starts, 
defined by equation (6) [m], E1 and E2 – Young’s 
modulus of the body material, E* – effective Young 
modulus, defined by equation (7), [MPa] ν1 and 
ν2 – Poisson’s ratio of the body material [-], Sy – 
yield strength of the material [MPa] (if bodies are 
made of two different materials, Sy is taken from 
the weaker one), R1 and R2 – surface curvature 
radius of the contacting bodies in the vicinity of the 
contact point [m], R* – effective surface curvature 
radius in the vicinity of the contact point, defined 
by equation (8) [m], Kv – yield strength coefficient, 
defined by equation (9) [-], δr  – residual deformation 
normalised by deformation at the instant when 
the yield starts, defined by equation (11) [-], np – 
exponent in unloading relation, defined by equation 
(12), [-].

The KE model defines three relations to 
determine the contact force in the loading phase 
(δ > 0) and one for the unloading phase (δ ≤ 0). 
It should be noted that the relations given for the 
loading phase do not result in a continuous contact 
force.

Problem definition

The development of published contact force 
models has been based on two-body systems. 
An impact analysed in such systems consists of 
the compression phase, which starts from a non-
contact state, followed by the restitution phase, 
the end of which is unambiguous with the impact 
end. Nevertheless, more complex phenomena may 
occur in multi-body systems, reducing the contact 
models’ prediction accuracy. Such phenomena may 
include switching to the compression phase during 
the restitution phase or starting the next collision 
along the same collision normal.

To illustrate potential problems which may 
arise during the application of the contact force 
model in complex systems, let us analyse collisions 
occurring in the system presented in Fig. 1. It 
consists of 3 balls made of X105CrMo17 stainless 
steel for which the following parameters were 
used: Young’s modulus – 209 GPa, Poisson’s ratio 
– 0.283, yield strength – 1175 MPa, density – 7.8 g/
cm, and Brinell hardness – 2756.8 MPa.

.

*

*

..
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Fig. 1. 	 A system of three collinear balls used to illustrate 
potential problems arising during the application 
of the contact force model in a complex system; 
the forces Fn1 and Fn2 are a result of the boundary 
condition, which permits interpenetration of balls 
and act only when contact occurs

Rys. 1.	 Układ trzech, ustawionych współosiowo kul użyty do 
zobrazowania problemów mogących wystąpić przy 
wykorzystaniu modelu siły kontaktu w złożonym sys-
temie; siły Fn1 oraz Fn2 są rezultatem warunku brze-
gowego zapobiegającego wzajemnej penetracji kul 
i działają wyłącznie w trakcie występowania kontaktu

Neglecting all forces except those resulting 
from frictionless contact, the equations of motion 
for the system can be written as follows:

where: m1, m2, m3 are ball masses, x1, x2, x3 are 
coordinates that give the ball positions as shown 
in Fig. 1, Fn1, Fn2 are contact forces resulting from 
equations (1)-(12), δ1, δ2  are local deformations of 
colliding balls and δ1, δ2 their relative velocity. 

Equations (13) – (19) form a second-order 
nonlinear differential equations system. This 
system was solved numerically using a script 
developed in Python. The script was based on two 
established libraries: NumPy and SciPy, and used 
to integrate the explicit Runge-Kutta method of 
order 4(5) with a time step equal to 10 s. The initial 
conditions were as follows:  x1

0 =  0 m, x2
0 = 20.07 

· 10-3 m, x3
0 =  40.07 · 10-3 m, x1

0 =  3 m/s, x2
0 =  

1 m/s, x3
0 =  0 m/s. Such values were chosen to 

illustrate a complex case in which the compression 
phase starts during the restitution phase.

Fig. 2 shows the impact force resulting from 
the collision of balls 2 and 3 for the system and 
the initial conditions described above. The force 
was presented as a function of time and local 
deformation to better present the behaviour of 
the contact force model. It can be seen that the 
collision force and local deformation increase 
until the relative velocity drops to 0 and the force 
and deformation reach the local maximum. The 
restitution phase starts at this point, marked as 1 
in Fig. 2. Before the collision between balls 2 and 
3 ceases, ball 1 impacts ball 2, which causes the 
collision between balls 2 and 3 to switch to the 
compression phase. This point is marked as 2 in 
Fig. 2. Because the initial velocity of ball 1 was 
substantially higher than the initial velocity of ball 
2, the maximum contact force and local deformation 
reached higher values marked by 3 in Fig. 2. It 
seems logical that the discontinuity at point 2 has 
no physical justification. It is a consequence of the 
inability of the contact force model to take into 
account the plastic deformation which occurred 
in the previous collision or compression phase. 
Therefore, when the compression phase starts 
during the restitution phase, the model switches to 
the loading relation, which, consequently, creates 
visible discontinuity and decreases the ability of 
the contact model to predict the impact quantities, 
especially the rebound velocity, properly. 

The second identified problem was related 
to modelling multiple collisions occurring along 
the same direction. The models available in 
the literature [L. 18, 24, 27, 29, 30] predict the 
results of the first collision quite well but cannot 
incorporate changes related to plastic deformation 
in subsequent impacts, increasing the model error. 
In order to demonstrate such a case, the system 
given by Equations (13) – (19) was used with the 
following initial conditions: x1

0 =  0 m, x2
0 = 20.06 

· 10-3 m, x3
0 =  40.06 · 10-3 m, x1

0 =  1.5 m/s, x2
0 =  

1 m/s, x3
0 =  0 m/s. It is necessary to mention that, 

in this case, the numerical simulation was stopped 
after the termination of the first collision, and an 
adjustment to the system state was introduced to 
include the permanent deformation resulting from 
the first impact. Otherwise, the simulation would 
result in a result with no sense, as just after the 
impact termination, the system state would indicate 
deformation equal to the plastic deformation and 
automatically switch to the collision state. The 
simulation result is shown in Fig. 3. The left plot, 
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Fig. 2. 	 Impact force resulting from the collision of balls 2 and 3 for the initial conditions: x =1
0  0 m, x =2

0 20.07 · 10-3 m, 
x =3
0  40.07 · 10-3 m, x =1

0  3 m/s, 
x =2
0  1 m/s, x =3

0  0 m/s; (a) plotted as a function of time and (b) plotted as a 
function of local deformation

Rys. 2. 	 Siła zderzenia powstająca w trakcie zderzenia kul 2 oraz 3 dla następujących warunków brzegowych: x1
0 =  0 m, x2

0 =
20,07 · 10-3 m, x3

0 =  40,07 · 10-3 m, x1
0 =  3 m/s, x2

0 =  1 m/s, x3
0 =  0 m/s; (a) wykres w funkcji czasu i (b) wykres 

w funkcji lokalnego odkształcenia

Fig. 3. 	 Impact force resulting from the collision of balls 2 and 3 for the initial conditions: x =1
0  0 m, x =2

0 20.06 · 10-3 m, 
x =3
0  40.06 · 10-3 m, x =1

0  1.5 m/s, 
x =2
0  1 m/s, x =3

0  0 m/s;  (a) plotted as a function of time and (b) plotted as a 
function of local deformation

Rys. 3. 	 Siła zderzenia powstająca w trakcie zderzenia kul 2 oraz 3 dla następujących warunków brzegowych: x1
0 =  0 m, x2

0 =
20,06 · 10-3 m, x3

0 =  40,06 · 10-3 m, x1
0 =  1,5 m/s, x2

0 =  1 m/s, x3
0 =  0 m/s;  (a) wykres w funkcji czasu i (b) wykres 

w funkcji lokalnego odkształcenia

described as (a), gives the time history of the 
impact force between balls 2 and 3. Due to manual 
modification of the system state, both collisions 
are separated in time, and it seems reasonable to 

include this functionality in model implementation. 
Another observation can be made in the right plot, 
described as (b), which shows the impact force 
as a function of local deformation. The curves 
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for both collisions are separate, whereas it seems 
reasonable to expect that the loading phase of the 
next collision will somewhat follow the unloading 
curve of the previous collision.

The solution to the described problems will be 
proposed in the following sections.

Validation methodology

The elastic-plastic contact force models available 
in the literature have mainly been developed 
and validated using data generated by models 
developed with the Finite Element Method (FEM). 
This approach is commonly accepted as the FEM 
method, which has been proven to deliver reliable 
results within the scope of contact modelling; it has 
been demonstrated by indentation and flattening 
tests using various materials and geometries  
[L. 31–35]. Therefore, we developed the FEM 
model of the analysed system to have a reference 
for the proposed improvements and to check 
their impact on the obtained results, including 
the assessment of error reduction achieved by the 
proposed algorithm.

The developed FEM model was based on the 
open-source CODE-ASTER 14.6 solver [L. 36]. It 
allows both static and dynamic nonlinear analysis. 
In this case, the routine DYNA_NON_LINE was 
used to analyse the system’s dynamic behaviour. Due 
to the axial symmetry of the system, the elements 
named AXIS were used. In order to generate the 
mesh of the half-circle geometry, GMSH [L. 37] 
was used. The element size in the contact area was 
determined iteratively by subsequent simulation 
and reduction of the element size to the point 
when the change in stresses was less than 1%. The 
final element size in the contact area was set to 
0.0166 mm and was constant at a distance smaller 
than 1.673 mm from the initial contact point. The 
elements with nodes with a distance greater than 
1.673 mm from the initial contact point gradually 
increased in size until reaching 1mm. The generated 
mesh is shown in Fig. 4.

The model created in CODE-ASTER consisted 
of three identical ball meshes. This was achieved 
by copying the mesh generated in GMSH and 
translating it by the distance necessary to obtain 
the initial positions. The contact used the discrete 
formulation. The initial time step was set to 3.25 μs, 
but an adaptive time step was used so that the time 
step was automatically reduced when the model 
could not achieve congruence. Post-processing 

was performed using Python scripts operating on 
concepts stored during simulation. This is a very 
convenient solution as CODE-ASTER uses Python 
scripting language for simulation definition files. 

Fig. 4. 	 Mesh used for the Finite Element Model
Rys. 4. 	 Siatka elementów skończonych wykorzystana w ana-

lizie Metodą Elementów Skończonych

PROPOSED ALGORITHM

As discussed previously, the application of contact 
force models in the simulation of impacts in 
multi-body systems may result in errors related to 
phenomena such as switching the collision state to 
compression directly from the restitution phase or 
multiple impacts occurring along the same impact 
normal. To reduce this error, we have proposed 
an algorithm that added additional features to the 
contact force model. This algorithm can be used 
to enhance any elastic-plastic contact force model 
available in the literature.

 The algorithm is presented in graphical form 
as the block diagram shown in Fig. 5. It extends 
the functionality of the contact model by the 
ability to detect the switch to compression from 
the restitution phase (or, in other words, from 
unloading directly to loading) and allows detection 
of previous impacts along the same normal. In 
the former case, the algorithm uses the modified 
relation for the loading phase to include part of 
the plastic deformation, which occurred during 
the compression phase. This approach seems to 
be reasonable and ensures that the contact force is 
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continuous. In the latter case, the permanent plastic 
deformation resulting from previous collisions is 
stored in the memory and used to modify the model 
input deformation (in this article Eqs. 16 and 17). 
Moreover, if the permanent plastic deformation is 
nonzero at the start of the collision, the algorithm 
uses the unloading relation of the contact model 
(in this case, Eq. 4) until the deformation reaches 
and exceeds the value achieved in the previous 
collision.

It is important to reiterate that the algorithm 
can be used as a ‘wrapper’, adding functionality 

to any elastic-plastic contact force model. 
Furthermore, the implementation can add these 
features as an option, which can be switched on 
and off depending on the investigated model. This 
enhances the reusability of the code.

In order to investigate the correctness of the 
proposed algorithm; it was implemented as an 
enhancement to the Kogut and Etsion contact 
force model. The implementation was performed 
in the Python programming language. The results 
obtained are presented in the following section.

Fig. 5. 	 Block diagram of the proposed algorithm
Rys. 5. 	 Schemat blokowy zaproponowanego algorytmu

RESULTS AND DISCUSSION

The algorithm proposed in the previous section is 
intended to improve the performance of the contact 
force model in modelling multiple impacts that 
occur during the analysis of multi-body systems. 
This improvement is achieved by (a) removing the 
discontinuity that occurs during the switch from 
restitution to the compression phase and (b) taking 

into account the permanent plastic deformation 
from previous impacts. The methodology of 
the algorithm is general and can be applied to 
any contact force model that expresses energy 
dissipation by plastic deformation occurring in 
the impacting bodies in the vicinity of the contact 
point. Therefore, to show that the algorithm can 
be correctly implemented, we selected one contact 
force model as an example. Of course, the error 
reduction achieved will vary depending on the 
contact model, and its broader study poses an 
interesting problem, but it is outside the scope of 
this article. This section presents results obtained 
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Fig. 6. 	 Impact force resulting from the collision of balls 2 and 3 for the initial conditions: x =1
0  0 m, x =2

0 20.07 · 10-3 
m, x =3

0  40.07 · 10-3 m, x =1
0  3 m/s, 

x =2
0  1 m/s, x =3

0  0 m/s for a basic contact force model; dots represent 
values obtained from the FEM simulation (a) plotted as a function of time and (b) plotted as a function of local 
deformation

Rys. 6. 	 Siła zderzenia powstająca w trakcie zderzenia kul 2 oraz 3 dla następujących warunków brzegowych: x1
0 =  0 m, x2

0 =
20,07 · 10-3 m, x3

0 =  40,07 · 10-3 m, x1
0 =  3 m/s, x2

0 =  1 m/s, x3
0 =  0 m/s dla wyjściowego modelu kontaktu; kropki 

reprezentują wartości referencyjne otrzymane z symulacji MES (a) wykres w funkcji czasu i (b) wykres w funkcji lokal-
nego odkształcenia

Fig. 7. 	 Impact force resulting from the collision of balls 2 and 3 for the initial conditions: x =1
0  0 m, x =2

0 20.07 · 10-3 m, 
x =3
0  40.07 · 10-3 m, x =1

0  3 m/s, 
x =2
0  1 m/s, x =3

0  0 m/s for an enhanced contact force model; dots represent 
values obtained from the FEM simulation (a) plotted as a function of time and (b) plotted as a function of local 
deformation

Rys. 7. 	 Siła zderzenia powstająca w trakcie zderzenia kuli 2 oraz 3 dla następujących warunków brzegowych: x1
0 =  0 m, x2

0 =
20,07 · 10-3 m, x3

0 =  40,07 · 10-3 m, x1
0 =  3 m/s, x2

0 =  1 m/s, x3
0 =  0 m/s��������������������������������������� dla modelu kontaktu z ulepszoną imple-

mentacją zaproponowaną w artykule; kropki reprezentują wartości referencyjne otrzymane z symulacji MES (a) wykres 
w funkcji czasu i (b) wykres w funkcji lokalnego odkształcenia
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Fig. 8. 	 Impact force resulting from the collision of balls 2 and 3 for the initial conditions: x =1
0  0 m, x =2

0 20.06 · 10-3 
m, x =3

0  40.06 · 10-3 m, x =1
0  1.5 m/s, 

x =2
0  1 m/s, x =3

0  0 m/s  for a basic contact force model, dots represent 
values obtained from the FEM simulation; (a) plotted as a function of time and (b) plotted as a function of local 
deformation

Rys. 8.	 Siła zderzenia powstająca w trakcie zderzenia kuli 2 oraz 3 dla następujących warunków brzegowych: x1
0 =  0 m, x2

0 =
20,06 · 10-3 m, x3

0 =  40,06 · 10-3 m, x1
0 =  1,5 m/s, x2

0 =  1 m/s, x3
0 =  0 m/s dla wyjściowego modelu kontaktu; kropki 

reprezentują wartości referencyjne otrzymane z symulacji MES (a) wykres w funkcji czasu i (b) wykres w funkcji lokal-
nego odkształcenia

Fig. 9. 	 Impact force resulting from the collision of balls 2 and 3 for the initial conditions: x =1
0  0 m, x =2

0 20.06 · 10-3 m, 
x =3
0  40.06 · 10-3 m, x =1

0  1.5 m/s, 
x =2
0  1 m/s, x =3

0  0 m/s for an enhanced contact force model, the dots represent 
the values obtained from the FEM simulation; (a) plotted as a function of time and (b) plotted as a function of local 
deformation

Rys. 9. 	 Siła zderzenia powstająca w trakcie zderzenia kuli 2 oraz 3 dla następujących warunków brzegowych: x1
0 =  0 m,  

x2
0 = 20,06 · 10-3 m, x3

0 =  40,06 · 10-3 m, x1
0 =  1,5 m/s, x2

0 =  1 m/s, x3
0 =  0 m/s  dla modelu kontaktu z ulepszoną 

implementacją zaproponowaną w artykule; kropki reprezentują wartości referencyjne otrzymane z symulacji MES (a) 
wykres w funkcji czasu i (b) wykres w funkcji lokalnego odkształcenia
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by enhancing the model proposed by Kogut and 
Etsion used to simulate impacts in the system 
presented in Fig. 1 for different initial conditions. 
These results were compared with those obtained 
from the FEM model described in Section 2.2.

Fig. 6 and Fig. 7 illustrate the impact force 
between balls 2 and 3 for the initial conditions:  
x1
0 =  0, x2

0 = 20.07 · 10-3 m, x3
0 =  40.07 · 10-3 m, 

x1
0 =  3 m/s, x2

0 =  1 m/s, x3
0 =  0 m/s. 

The impact force was plotted as a function of 
time and local deformation. The dots represent values 
obtained from the FEM analysis. A comparison of 
both Figures illustrated the correct elimination of 
the discontinuity resulting from the switch from 
restitution to the compression phase, plotted in  
Fig. 6 as a vertical line. This vertical line is not 
present in Fig. 7, where the curve representing the 
impact force is continuous.

An analogous comparison is presented in 
Fig. 8 and Fig. 9 for the initial conditions:  x1

0 =  
0 m, x2

0 = 20.06 · 10-3 m, x3
0 =  40.06 · 10-3 m, 

x1
0 =  1.5 m/s, x2

0 =  1 m/s, x3
0 =  0 m/s. In this 

case, there were two subsequent impacts between 
balls 2 and 3. It should be noted that the results 
obtained for the basic contact force model for 

these initial conditions resulted from two steps. 
After the first impact between balls 2 and 3 ended, 
the numerical simulation was stopped, and the 
system’s state was manually adjusted to include 
permanent local deformations. Then, in the second 
step, the simulation was run until the end of the 
time limit. Such a modification was necessary 
because the results contained impacts that should 
not occur without it. It improved the output of 
the basic model, but without it, the comparison 
would not be possible, and, as can be observed in  
Fig. 9, the enhanced model still offered better 
results. Inspection of Fig. 9 reveals that the contact 
force was better fitted to the FEM data and, which is 
especially visible in the curves plotted as a function 
of local deformation, the second impact force 
followed the unloading curve from the previous 
collision, contrary to the basic model shown in  
Fig. 8, where curves for both collisions are separate.

The ability to predict the post-impact velocities 
is crucial from the perspective of the multi-body 
simulation accuracy. In order to demonstrate 
how the velocities may have been affected by the 
enhancement of the contact force model, the results 
obtained during the simulations conducted are 
presented in Tables 1 and 2. The analysis of both 
tables demonstrates that the proposed algorithm 

Table 1. 	 Post-impact velocities for balls 2 and 3 resulting from the basic contact force model, enhanced contact force 
model and FEM analysis; simulation for the initial conditions:  x =1

0  0 m, x =2
0 20.07 · 10-3 m, x =3

0  40.07 ·  
10-3 m, x =1

0  3 m/s, 
x =2
0  1 m/s, x =3

0  0 m/s
Tabela 1. 	 Prędkości kul 2 oraz 3 po zakończeniu zderzenia dla wyjściowego modelu kontaktu, jego ulepszonej implementacji 

zaproponowanej w artykule oraz modelu MES; symulacja dla warunków początkowych: x1
0 =  0 m, x2

0 = 20,07 ·  
10-3 m, x3

0 =  40,07 · 10-3 m, x1
0 =  3 m/s, x2

0 =  1 m/s, x3
0 =  0 m/s

Ball number
Post-impact velocity [m/s] Error [%]

Basic model Enhanced model FEM Basic model Enhanced model
2 0.94188 0.92441 0.91398 -3.05 -1.14
3 1.34048 1.35795 1.36217 1.59 0.31

Table 2. 	 Post-impact velocities for balls 2 and 3 resulting from the basic contact force model, enhanced contact force 
model, and FEM analysis; simulation for the initial conditions:  x =1

0  0 m, x =2
0 20.07 · 10-3 m, x =3

0  40.07 · 10-3 
m, x =1

0  3 m/s, 
x =2
0  1 m/s, x =3

0  0 m/s 
Tabela 2. 	 Prędkości kul 2 oraz 3 po zakończeniu zderzenia dla wyjściowego modelu kontaktu, jego ulepszonej implementacji 

zaproponowanej w artykule oraz modelu MES; symulacja dla warunków początkowych: x1
0 =  0 m, x2

0 = 20,07 · 10-3 
m, x3

0 =  40,07 · 10-3 m, x1
0 =  3 m/s, x2

0 =  1 m/s, x3
0 =  0 m/s 

Ball number
Post-impact velocity [m/s] Error [%]

Basic model Enhanced model FEM Basic model Enhanced model
2 1.29691 1.25946 1.26341 -2.65 0.31
3 2.40896 2.41681 2.44515 1.48 1.16
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allows a significant reduction of error, which is 
especially crucial in multiple impact cases, where 
it stacks during subsequent collisions. However, 
it should be noted that, for proper assessment of 
the error reduction, a substantially broader analysis 
must be conducted, which is outside the scope of 
this paper.

CONCLUSIONS

The article has proposed enhancing an elastic-
plastic contact force model, which should improve 
its accuracy in modelling multiple impacts. 
The proposed enhancement is focused on two 
phenomena: switching the impact state directly 
from restitution to the compression phase and 
multiple impacts occurring along the same 
impact normal and causing permanent plastic 
deformation. The algorithm was used to enhance 
one selected contact force model, and it has been 
shown that it can be correctly applied to achieve 
the expected outcomes. The results obtained were 
validated with the FEM model and showed that 
the enhanced model allowed a reduction of the 
velocity prediction error by up to 2.34%. This 
value is obviously only indicative because the 
investigated system was relatively simple (only 

three bodies), and the enhancement was applied 
only to one model. This problem will be addressed 
in future studies, where more complex systems will 
be analysed using different elastic-plastic contact 
force models, as the proposed algorithm can be 
used with any such model. It should be expected 
that the gains resulting from the enhancement will 
be more significant in such systems. Although the 
proposed algorithm offers an improvement, it must 
also be noted that its implementation increases the 
computational cost of the model. In the analysed 
cases, this increase was almost non-existent, but 
more complex systems may be influenced on 
a level hard to predict because of the high level of 
problem non-linearity. Implementing the proposed 
algorithm in the PROJECT CHRONO engine has 
been planned to study this aspect better. Studies 
performed with such an implementation will allow 
the collection of data from larger systems and 
a better assessment of the algorithm’s impact on 
performance. This data, combined with a broader 
study of error reduction, will allow the potential user 
to make better judgments on possible application 
cases.
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