PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of a passive autocatalytic hydrogen recombiner : a parametric study

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
All-Polish Seminar on Mössbauer Spectroscopy OSSM 2014 (10th ; 15-18.06.2014 ; Wrocław, Poland)
Języki publikacji
EN
Abstrakty
EN
Operation of a passive autocatalytic hydrogen recombiner (PAR) has been investigated by means of computational fluid dynamics methods (CFD). The recombiner is a self-active and self-adaptive device used to remove hydrogen from safety containments of light water nuclear reactors (LWR) by means of a highly exothermic reaction with oxygen at the surface of a platinum or palladium catalyst. Different turbulence models (k-ω, k-ε, intermittency, RSM) were applied in numerical simulations of : gas flow, heat and mass transport and chemical surface reactions occurring in PAR. Turbulence was found to improve mixing and mass transfer and increase hydrogen recombination rate for high gas flow rates. At low gas flow rates, simulation results converged to those obtained for the limiting case of laminar flow. The large eddy simulation technique (LES) was used to select the best RANS (Reynolds average stress) model. Comparison of simulation results obtained for two- and three-dimensional computational grids showed that heat and mass transfer occurring in PAR were virtually two-dimensional processes. The effect of hydrogen thermal diffusion was also discussed in the context of possible hydrogen ignition inside the recombiner.
Czasopismo
Rocznik
Strony
161--169
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, 1 Waryńskiego Str., 00-645 Warsaw, Poland, Tel.: +48 22 234 6435, Fax: +48 22 825 1440
Bibliografia
  • 1. International Atomic Energy Agency. (2001). Mitigation of hydrogen hazards in water cooled power reactors. Vienna: IAEA. (IAEA-TECDOC-1196).
  • 2. International Atomic Energy Agency. (2011). Mitigation of hydrogen hazards in severe accidents in nuclear power plants. Vienna: IAEA. (IAEA-TECDOC-1661).
  • 3. Reinecke, E. A., Bentaib, A., Kelm, S., Jahn, W., Meynet, N., & Caroli, C. (2010). Open issues in the applicability of recombiner experiments and modeling to reactor simulations. Prog. Nucl. Energy, 52, 136–147.
  • 4. Fineschi, F., Bazzichi, M., & Carcassi, M. (1996). A study of the hydrogen recombination rates of catalytic recombiners and deliberate ignition. Nucl. Eng. Des.,166, 481–494.
  • 5. Heitsch, M. (2000). Fluid dynamic analysis of a catalytic recombiner to remove hydrogen. Nucl. Eng. Des., 201, 1–10.
  • 6. Gera, B., Sharma, P. K., & Singh, R. K. (2010). Numerical study of passive catalytic recombiner forhydrogen mitigation. CFD Letters, 2, 123–136.
  • 7. Prabhudharwadkar, D. M., & Iyer, K. N. (2011). Simulations of hydrogen mitigation in catalytic recombiner: Formulation of a CFD model. Nucl. Eng. Des., 241, 1758–1767.
  • 8. Meynet, N., Bentaib, A., & Giovangigli, V. (2014). Impact of oxygen starvation on operation and potential gas-phase ignition of passive auto-catalytic recombiners. Combust. Flame, 161, 2192–2202.
  • 9. Klauck, M., Reinecke, E. -A., Kelm, S., Meynet, N., & Bentaib, A., & Allelein, H. -J. (2014). Passive autocatalytic recombiners operations in the presence of hydrogen and carbon monoxide: Experimental study and model development. Nucl. Eng. Des., 266, 137–147.
  • 10. Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2001). The properties of gases and liquids. Boston, USA: McGraw-Hill Co.
  • 11. Drinovac, P. (2006). Experimental studies on catalytic hydrogen recombiners for light water reactors. PhD Thesis, RWTH Aachen University, Germany.
  • 12. The European Stainless Steel Association, Tables of technical properties of stainless steels. Retrieved in August 2014, from http://www.euro-inox.org/technical_tables/.
  • 13. Churchill, S. W., & Chu, H. H. S. (1975). Correlating equations for laminar and turbulent free convection from a vertical plate. Int. J. Heat Mass Transfer, 18, 1323–1329.
  • 14. Rohsenow, W. M., Hartnett, J. P., & Cho, Y. I. (1998). Handbook of heat transfer. New York, USA: McGraw-Hill Co.
  • 15. Monarch Instrument. (2014). Table of total emissivity. Metals. Retrieved in August 2014, from http://www.monarchserver.com/TableofEmissivity.pdf.
  • 16. Friedel, E., Rosen, A., & Kasemo, B. (1994). A laser induced fl uorescence study on OH desorption from Pt in H2O/O2 and H2O/H2 mixtures. Langmuir, 10, 699–708.
  • 17. Prabhudharwadkar, D. M., Aghalayam, P. A., & Iyer, K. N. (2011). Simulations of hydrogen mitigation incatalytic recombiner: Surface chemistry modelling. Nucl. Eng. Des., 241, 1746–1757.
  • 18. Schefer, R. W. (1982). Catalyzed combustion of H2/air mixtures in a fl at plate boundary layer: Numerical model. Combust. Flame, 45, 171–190.
  • 19. SAS IP, Inc. (2012). Ansys Release 14.5 Theory Guide. Canonsburg, USA.
  • 20. SAS IP, Inc. (2012). Ansys Release 14.5 User Guide.Canonsburg, USA
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f5fa15b-2812-4726-a7fc-0a10864abbc3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.