PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

QSAR study of amine collectors for iron ore reverse flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to reveal the relationship between flotation behaviors of collectors and their structures, quantitative structure–activity relationship (QSAR) study about separation efficiency of quartz from hematite using amine collectors was performed. The genetic function approximation (GFA) algorithm was applied to generate the correlation models and model with acceptable R2&nbspand Rcv2 (cross validated R-squared) correlation coefficients (R2=0.9666, Rcv2=0.9201) was developed. The model revealed that the Lowest Unoccupied Molecular Orbital (LUMO) energy of the molecule, the charge of nitrogen and the electronegativity of polar group were the major factors that affected the separation efficiency of collectors. The higher nitrogen charge, the larger electronegativity of polar group and the more positive of LUMO energy of amine collectors were, the higher separation efficiency would be.
Rocznik
Strony
1059--1069
Opis fizyczny
Bibliogr. 55 poz., tab., wykr., wz.
Twórcy
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
Bibliografia
  • ACKERMAN, P.K., HARRIS, G.H., KLIMPEL, R.R., APLAN, F.F., 2000. Use of xanthogen formates as collectors in the flotation of copper sulfides and pyrite. Int. J. Miner. Process. 58, 1-13.
  • AHAMAD, I., PRASAD, R., QURAISHI, M.A., 2010. Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions. Corros. Sci. 52, 933-942.
  • ARAUJO, A.C., VIANA, P.R.M., PERES, A.E.C., 2005. Reagents in iron ores flotation. Miner. Eng. 18, 219-224.
  • BASAK, S.C., GUTE, B.D., GRUNWALD, G.D., 1997. Use of topostructural, topochemical, and geometric parameters in the prediction of vapor pressure: A hierarchical QSAR approach. J. Chem. Inf. Comp. Sci. 37, 651-655.
  • BREZANI, I., SKVARLA, J., SISOL, M., 2017. Reverse froth flotation of magnesite ore by using (12-4-12) cationic gemini surfactant. Miner. Eng. 110, 65-68.
  • DE MEDEIROS, A.R.S., BALTAR, C.A.M., 2018. Importance of collector chain length in flotation of fine particles. Miner. Eng. 122, 179-184.
  • DENG, L., ZHAO, G., ZHONG, H., WANG, S., LIU, G., 2016. Investigation on the selectivity of N-((hydroxyamino)-alkyl) alkylamide surfactants for scheelite/calcite flotation separation. J. Ind. Eng. Chem. 33, 131-141.
  • DEVILLERS, J., BALABAN, A.T., 2000. Topological indices and related descriptors in QSAR and QSPAR. CRC Press.
  • DIAO, J., LI, Y., SHI, S., SUN, Y., SUN, Y., 2010. QSAR models for predicting toxicity of polychlorinated dibenzo-p-dioxins and dibenzofurans using quantum chemical descriptors. B. Environ. Contam. Tox. 85, 109-115.
  • EROGLU, E., T RKMEN, H., 2007. A DFT-based quantum theoretic QSAR study of aromatic and heterocyclic sulfonamides as carbonic anhydrase inhibitors against isozyme, CA-II. J. Mol. Graph. Model. 26, 701-708.
  • FILIPPOV, L.O., SEVEROV, V.V., FILIPPOVA, I.V., 2014. An overview of the beneficiation of iron ores via reverse cationic flotation. Int. J. Miner. Process. 127, 62-69.
  • GAO, Z., SUN, W., HU, Y., 2015. New insights into the dodecylamine adsorption on scheelite and calcite: An adsorption model. Miner. Eng. 79, 54-61.
  • HAMMER, B., HANSEN, L.B., N RSKOV, J.K., 1999. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B. 59, 7413-7421.
  • HANCOCK, R., 1920. Efficiency of classification. Eng. Min. J. 110, 622-628.
  • HU, Y.H., CHEN, P., SUN, W., 2012. Study on quantitative structure-activity relationship of quaternary ammonium salt collectors for bauxite reverse flotation. Miner. Eng. 26, 24-33.
  • HUANG, Z.G., ZHONG, H., WANG, S., XIA, L.Y., ZOU, W.B., LIU, G.Y., 2014. Investigations on reverse cationic flotation of iron ore by using a Gemini surfactant: Ethane-1,2-bis(dimethyl-dodecyl-ammonium bromide). Chem. Eng. J. 257, 218-228.
  • KAR, S., ROY, K., 2010. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors. J. Hazard. Mater. 177, 344-351.
  • KARELSON, M., LOBANOV, V.S., KATRITZKY, A.R., 1996. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev. 96, 1027-1043.
  • KHALED, K.F., 2011. Modeling corrosion inhibition of iron in acid medium by genetic function approximation method: AQSAR model. Corros. Sci. 53, 3457-3465.
  • LAITINEN, O., HARTMANN, R., SIRVIO, J.A., LIIMATAINEN, H., RUDOLPH, M., AMMALA, A., ILLIKAINEN, M., 2016. Alkyl aminated nanocelluloses in selective flotation of aluminium oxide and quartz. Chem. Eng. Sci. 144, 260-266.
  • LI, X.B., ZHANG, Q., HOU, B., YE, J.J., MAO, S., LI, X.H., 2017. Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms. Powder. Technol. 318, 224-229.
  • LIU, A., FAN, J., FAN, M., 2015. Quantum chemical calculations and molecular dynamics simulations of amine collector adsorption on quartz (0 0 1) surface in the aqueous solution. Int. J. Miner. Process. 134, 1-10.
  • LIU, C.M., HU, Y.H., CAO, X.F., 2009. Substituent effects in kaolinite flotation using dodecyl tertiary amines. Miner. Eng. 22, 849-852.
  • LIU, G., XIAO, J., ZHOU, D., ZHONG, H., CHOI, P., XU, Z., 2013. A DFT study on the structure-reactivity relationship of thiophosphorus acids as flotation collectors with sulfide minerals: Implication of surface adsorption. Colloid. Surfaces. A. 434, 243-252.
  • LIU, W.G., ZHAO, L., LIU, W.B., YANG, T., DUAN, H., 2019. Synthesis and utilization of a gemini surfactant as a collector for the flotation of hemimorphite from quartz. Miner. Eng. 134, 394-401.
  • LIU, W.B., LIU, W.G., WEI, D.Z., LI, M.Y., ZHAO, Q., XU, S.C., 2017. Synthesis of N,N-Bis(2-hydroxypropyl)laurylamine and its flotation on quartz. Chem. Eng. J. 309, 63-69.
  • LIU, W.G., LIU, W.B., DAI, S.J., WANG, B.Y., 2018. Adsorption of bis(2-hydroxy-3-chloropropyl) dodecylamine on quartz surface and its implication on flotation. Results. Phys. 9, 1096-1101.
  • LIU, W.G., LIU, W.B., WANG, X.Y., WEI, D.Z., WANG, B.Y., 2016. Utilization of novel surfactant N-dodecylisopropanolamine as collector for efficient separation of quartz from hematite. Sep. Purif. Technol. 162, 188-194.
  • MANSOURI, K., RINGSTED, T., BALLABIO, D., TODESCHINI, R., CONSONNI, V., 2013. Quantitative structure– activity relationship models for ready biodegradability of chemicals. J. Chem. Inf. Model. 53, 867-878.
  • NATARAJAN, R., NIRDOSH, I., 2003. Application of topochemical, topostructural, physicochemical and geometrical parameters to model the flotation efficiencies of N-arylhydroxamic acids. Int. J. Miner. Process. 71, 113-129.
  • NATARAJAN, R., NIRDOSH, I., 2006. New collectors for sphalerite flotation. Int. J. Miner. Process. 79, 141-148.
  • NATARAJAN, R., NIRDOSH, I., 2008. Quantitative structure-activity relationship (QSAR) approach for the selection of chelating mineral collectors. Miner. Eng. 21, 1038-1043.
  • NATARAJAN, R., NIRDOSH, I., 2009. Effect of molecular structure on the kinetics of flotation of a Canadian nickel ore by N-arylhydroxamic acids. Int. J. Miner. Process. 93, 284-288.
  • NATARAJAN, R., NIRDOSH, I., BASAK, S.C., MILLS, D.R., 2002. QSAR modeling of flotation collectors using principal components extracted from topological indices. J Chem Inf Comput Sci. 42, 1425-1430.
  • NOVICH, B., RING, T., 1985. A predictive model for the alkylamine-quartz flotation system. Langmuir. 1, 701-708.
  • RANDIC, M., 1975. Characterization of molecular branching. J. Am. Chem. Soc. 97, 6609-6615.
  • ROGERS, D., HOPFINGER, A.J., 1994. Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J. Chem. Inf. Comp. Sci. 34, 854-866.
  • SABLJIC, A., 2001. QSAR models for estimating properties of persistent organic pollutants required in evaluation of their environmental fate and risk. Chemosphere. 43, 363-375.
  • SAHOO, H., SINHA, N., RATH, S.S., DAS, B., 2015. Ionic liquids as novel quartz collectors: Insights from experiments and theory. Chem. Eng. J. 273, 46-54.
  • SHAHLAEI, M., 2013. Descriptor Selection Methods in Quantitative Structure-Activity Relationship Studies: A Review Study. Chem. Rev. 113, 8093-8103.
  • SHI, L.M., FAN, Y., MYERS, T.G., O'CONNOR, P.M., PAULL, K.D., FRIEND, S.H., WEINSTEIN, J.N., 1998. Mining the NCI anticancer drug discovery databases: Genetic function approximation for the QSAR study of anticancer ellipticine analogues. J. Chem. Inf. Comp. Sci. 38, 189-199.
  • SIVAKUMAR, P.M., BABU, S.K.G., MUKESH, D., 2007. QSAR studies on chalcones and flavonoids as anti-tuberculosis agents using genetic function approximation (GFA) method. Chem. Pharm. Bull. 55, 44-49.
  • OMASUNDARAN, P., HEALY, T.W., FUERSTENAU, D., 1964. Surfactant adsorption at the solid—liquid interface—dependence of mechanism on chain length. J. Phys. Chem. 68, 3562-3566.
  • TODESCHINI, R., CONSONNI, V., 2008. Handbook of molecular descriptors. John Wiley & Sons.
  • VAZIRI HASSAS, B., KARAKAŞ, F., ÇELIK, M.S., 2014. Ultrafine coal dewatering: Relationship between hydrophilic lipophilic balance (HLB) of surfactants and coal rank. Int. J. Miner. Process. 133, 97-104.
  • WANG, D.Z., LIN, Q., JIANG, Y.R., 1996. Molecular Design of Reagents for Mineral and Metallurgical Processing (in Chinese). Central south university of technology press.
  • WANG, X.Y., LIU, W.G., DUAN, H., LIU, W.B., 2018. Degradation mechanism study of amine collectors in Fenton proces by quantitative structure-activity relationship analysis. Physicochem. Probl. Mi. 54, 713-721.
  • WILMSHURST, J., 1957. Electronegativity of radicals. A method of calculation. J. Chem. Phys. 27, 1129-1131.
  • WILMSHURST, J.K., 1959. Empirical Expression for Ionic Character and the Determination of s Hybridization from Nuclear Quadrupole Coupling Constants. J. Chem. Phys. 30, 561-565.
  • YANG, F., SUN, W., HU, Y.H., 2012. QSAR analysis of selectivity in flotation of chalcopyrite from pyrite for xanthate derivatives: Xanthogen formates and thionocarbamates. Miner. Eng. 39, 140-148.
  • YANG, X.L., ALBIJANIC, B., LIU, G.Y., ZHOU, Y., 2018a. Structure-activity relationship of xanthates with different hydrophobic groups in the flotation of pyrite. Miner. Eng. 125, 155-164.
  • YANG, X.L., ALBIJANIC, B., ZHOU, Y., ZHOU, Y., ZHU, X.N., 2018b. Using 3D-QSAR to predict the separation efficiencies of flotation collectors: Implications for rational design of non-polar side chains. Miner. Eng. 129, 112-119.
  • YU, X., ZHONG, H., LIU, G., 2008. Current research status on cationic collector of reverse flotation desilication. Light. Metals. 6, 6-10.
  • ZHANG, X.R., QIAN, Z.B., ZHENG, G.B., ZHU, Y.G., WU, W.G., 2017. The design of a macromolecular depressant for galena based on DFT studies and its application. Miner. Eng. 112, 50-56.
  • ZHU, Y., LUO, B., SUN, C., LIU, J., SUN, H., LI, Y., HAN, Y., 2016. Density functional theory study of α-Bromolauric acid adsorption on the α-quartz (101) surface. Miner. Eng. 92, 72-77.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f5be8ef-ade1-44a6-ab39-cb829d79adf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.