PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advanced lifetime assessment of steam turbine components based on long-term operating data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a new method of lifetime calculations of steam turbine components operating at high temperatures. Component life is assessed on the basis of creep-fatigue damage calculated using long-term operating data covering the whole operating period instead of representative events only. The data are analysed automatically by a dedicated computer program developed to handle big amount of process data. Lifetime calculations are based on temperature and stress analyses performed by means of finite element method and using automatically generated input files with thermal and mechanical boundary conditions. The advanced lifetime assessment method is illustrated by an example of lifetime calculations of a steam turbine rotor.
Rocznik
Strony
579--597
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • GE Power Sp.z o.o., 82-300 Elbląg, Stoczniowa 2, Poland
autor
  • GE Power Sp.z o.o., 82-300 Elbląg, Stoczniowa 2, Poland
  • GE Power Sp.z o.o., 82-300 Elbląg, Stoczniowa 2, Poland
Bibliografia
  • [1] M. Pawlik. Technologically advanced power plant units – new challenges. Energetyka, 8:595–599, 2012 (in Polish).
  • [2] K. Helbig. Steam Plant Case Study: Plant Flexibility Improvements focus ST – minimize variable plant costs. In: Power Plant Flexibility Europe, Vienna, 2013.
  • [3] J. Vogt, T. Schaaf, and K. Helbig. Optimizing lifetime consumption and increasing flexibility using enhanced lifetime assessment methods with automated stress calculation from long-term operation data. In: ASME Turbo-Expo: Turbine Technical Conference and Exposition, San Antonio, USA, 3–7 June, 2013. doi: 10.1115/GT2013-95068.
  • [4] K. Helbig, M. Banaszkiewicz, and W. Mohr. Advanced lifetime assessment and stress control of steam turbines. In: PowerGen Europe, Milan, 2016.
  • [5] T. Chmielniak and G. Kosman. Thermal Loads of Steam Turbines, Wydawnictwa Naukowo-Techniczne WNT, Warszawa, 1990 (in Polish).
  • [6] M. Banaszkiewicz. Numerical investigations of crack initiation in impulse steam turbine rotors subject to thermo-mechanical fatigue. Applied Thermal Engineering, 138:761–773, 2018. doi: 10.1016/j.applthermaleng.2018.04.099.
  • [7] J. Bolton. A “characteristic strain” model for creep. Materials at High Temperatures, 25(3):197–204, 2008. doi: 10.3184/096034008X357573.
  • [8] S.R. Holdsworth. Constitutive equations for creep curves and predicting service life. In: F. Abe, T.U. Kern, R. Viswanathan, editors, Creep-Resistant Steels, chapter 14, pages 403–420,Woodhead Publishing Limited, 2008.
  • [9] M. Banaszkiewicz. Analysis of rotating components based on a characteristic strain model of creep. Journal of Engineering Materials and Technology, 138(3):031004-1-11, 2016. doi: 10.1115/1.4032661.
  • [10] S.R. Holdsworth, M. Askins, A. Baker, E. Gariboldi, S. Holmström, A. Klenk, M. Ringel, G. Merckling, R. Sandström, M. Schwienheer, and S. Spigarelli. Factors influencing creep model equation selection. International Journal of Pressure Vessels and Piping, 85(1-2):80–88, 2008. doi: 10.1016/j.ijpvp.2007.06.009.
  • [11] M. Banaszkiewicz. Online monitoring and control of thermal stresses in steam turbine rotors. Applied Thermal Engineering, 94:763–776, 2016. doi: 10.1016/j.applthermaleng.2015.10.131.
  • [12] W. Guo, C.H. Wang, and L.R.F. Rose. Elastoplastic analysis of Notch-Tip Fields in Strain Hardening Materials. Aeronautical and Maritime Research Laboratory Report, DSTO-RR-0137, Melbourne, Australia, 1998.
  • [13] H. Neuber. Theory of stress concentration for shear-strained prismatic bodies with arbitrary nonlinear stress-strain law. Journal of Applied Mechanics, 28(4):544–550, 1961. doi: 10.1115/1.3641780.
  • [14] M. Hoffman and T. Seeger. A generalized method for estimating multi-axial elastic-plastic notch stresses and strains, Part 1: Theory. Journal of Engineering Materials and Technology, 107(4):250–254, 1985. doi: 10.1115/1.3225814.
  • [15] M. Hoffman and T. Seeger. A generalized method for estimating multi-axial elastic-plastic notch stresses and strains, Part 2: Application and general discussion. Journal of Engineering Materials and Technology, 107(4):255–260, 1985. doi: 10.1115/1.3225815.
  • [16] A. Moftahar, A. Buczyński, and G. Glinka. Calculation of elasto-plastic strains and stresses in notches under multiaxial loading. International Journal of Fracture, 70(4):357–373, 1995. doi: 10.1007/BF00032453.
  • [17] T. Bednarski, Mechanics of plastic flow, PWN, Warsaw, 1995 (in Polish).
  • [18] H. Ziegler. A modification of Prager’s hardening rule. Quarterly of Applied Mathematics, 17:55–65, 1959.
  • [19] ABAQUS 6.12 User Manual
  • [20] M. Banaszkiewicz. Multilevel approach to lifetime assessment of steam turbines. International Journal of Fatigue, 73:39–47, 2015. doi: 10.1016/j.ijfatigue.2014.10.009.
  • [21] F. Colombo. Service-like thermo-mechanical fatigue characteristic of 1CrMoV rotor steel. Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland 2007. doi: 10.3929/ethz-a-005415280.
  • [22] Lifetime Assessment Instruction, ALSTOM Power, Baden, 2007.
  • [23] K. Mazur-Buyko. Computational methods of lifetime determination of steam turbine casings and rotors. In: 1st Scientific-Technical Session “Lifetime of steam turbine components and methods of its prediction”, pages 42–53, 1986 (in Polish).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f5b5758-0999-4402-b401-32b3de69648d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.