Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Complex gaps may be formed when carrying out live working in substations, while the discharge characteristics of complex gaps are different from those of single gaps. This paper focuses on the prediction of critical 50% positive switching impulse breakdown voltage (𝑈50,crit+) of phase-to-phase complex gaps formed in 220 kV substations. Firstly, several electric field features were defined on the shortest discharge path of the complex gap to reflect the electric field distribution. Then support vector machine (SVM) prediction models were established according to the connection between electric field distribution and breakdown voltage. Finally, the 𝑈50,crit+ data of the complex gap were obtained through twice electric field calculations and predictions. The prediction results show that the minimum 𝑈50,crit+ of phase-to-phase complex gaps is 1147 kV, and the critical position is 0.9 m away from the high voltage conductor, accounting for 27% of the whole gap. Both critical position and voltage are in good agreement with the values provided in IEC 61472.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
507--521
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wz.
Twórcy
autor
- Jiangmen Power Supply Bureau Co., Ltd. China
autor
- Jiangmen Power Supply Bureau Co., Ltd. China
autor
- School of Automation, Wuhan University of Technology China
autor
- Jiangmen Power Supply Bureau Co., Ltd. China
Bibliografia
- [1] Yi H., Kai L., Yong P., Ziming S., Tian W., Research Status and Development Trend of Live Working Key Technology, High Voltage Engineering, vol. 40, no. 07, pp. 1921–1931 (2014), DOI: 10.13336/j.1003-6520.hve.2014.07.001.
- [2] Bidi M., Biological risk assessment of high-voltage transmission lines on worker’s health of electric society, Archives of Electrical Engineering, vol. 69, no. 1, pp. 57–68 (2020), DOI: 10.24425/aee.2020.131758.
- [3] Chang-Qiong Y., Mai L., Safety evaluation for a high signal operator with electric field exposure induced by contact wires, Archives of Electrical Engineering, vol. 70, no. 2, pp. 431–444 (2021), DOI: 10.24425/aee.2021.136994.
- [4] Group L.R., Research on long air gap discharges at les Renardičres; Leader and streamer voltage gradient, Electra, vol. 23, pp. 53–157 (1972).
- [5] Group L.R., Research on long air gap discharges at les Renardičres—1973 results, vol. 35, pp. 49–156 (1974).
- [6] Group L.R., Positive Discharges in Long Air Gaps at Les Renardičres - 1975 Results and Conclusions, Electra, vol. 53, pp. 31–153 (1977).
- [7] Carrara G., Thione L., Switching surge strength of large air gaps: A physical approach, IEEE Transactions on Power Apparatus and Systems, vol. 95, no. 2, pp. 512–524 (1976), DOI: 10.1109/T-PAS.1976.32131.
- [8] Taniguchi S., Okabe S., Asakawa A., Shindo T., Flashover Characteristics of Long Air Gaps with Negative Switching Impulses, Dielectrics and Electrical Insulation IEEE Transactions on, vol. 15, no. 2, pp. 399–406 (2008), DOI: 10.1109/TDEI.2008.4483458.
- [9] Kishizima I., Matsumoto K., Watanabe Y., New Facilities for Phase-to-Phase Switching Impulse Tests and Some Test Results, IEEE Power Engineering Review, vol. PAS-103, no. 6, pp. 1211–1216 (1984), DOI: 10.1109/TPAS.1984.318451.
- [10] Insulation coordination Part 2: Application guide, IEC 60071-2 (2018).
- [11] Paris L.,Influence of Air Gap Characteristics on Line-to-Ground Switching Surge Strength, IEEE Transactions on Power Apparatus and Systems, vol. PAS-86, no. 8, pp. 936–947 (1967), DOI: 10.1109/TPAS. 1967.291917.
- [12] Huanqing C., Guiwei S., Zhike W., Ji H., Jing F., Yi C., Influence of Floating Conducting Objects on Switching Impulse Discharge Characteristics of Phase-to-phase Gap Between Tabular Buses, High Voltage Engineering, vol. 40, no. 12, pp. 3918–3925 (2014), DOI: 10.13336/j.1003-6520.hve.2014.12.037.
- [13] Baek M.K., Chung Y.K., Han Park I.I., Experiment and Analysis for Effect of Floating Conductor on Electric Discharge Characteristic, IEEE Transactions on Magnetics, vol. 49, no. 5, pp. 2323–2326 (2013), DOI: 10.1109/TMAG.2013.2240280.
- [14] Zhenbing Z., Xin W., Hengzhi Z., Wei C., Xiquda Z., Min W., Qing L., Tianjun S., Zezhong S., Hailiang L., Study on Switching Impulse Discharging Characteristics of Rod-Plate-Rod Combination Gap with Potential Suspension Metal Plate, Insulators and Surge Arresters, no. 293, pp. 29–35 (2020), DOI: 10.16188/j.isa.1003-8337.2020.01.005.
- [15] Shenghui W., Guanghua Y., Weijiang C., Jun Z., Yujian D., Fangcheng L., Yunpeng L., Experimental Study on Discharge Characteristics of Combined Air Gap with Floating Potential Conductor, High Voltage Apparatus, vol. 54, no. 4, pp. 0001–0007 (2018), DOI: 10.13296/j.1001-1609.hva.2018.04.001.
- [16] Rizk F.A.M., Effect of floating conducting objects on critical switching impulse breakdown of air insulation, IEEE Transactions on Power Delivery, vol. 10, no. 3, pp. 1360–1370 (1995), DOI: 10.1109/61.400917.
- [17] Guanghua Y., Shenghui W., Weijiang C., Huaqian W., Fangcheng L., Jun Z., Yujian D., Study on the Calculation Method of AC Breakdown Voltage of Complex Air Gap, High Voltage Apparatus, vol. 56, no. 3, pp. 23–29 (2020), DOI: 10.13296/j.1001-1609.hva.2020.03.004.
- [18] Zhibin Q., Jiangjun R., Congpeng H., Wenjie X., Liezheng T., Daochun H., A method for breakdown voltage prediction of short air gaps with atypical electrodes, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 23, no. 5, pp. 2685–2694 (2016), DOI: 10.1109/TDEI.2016.7736827.
- [19] Zhibin Q., Jiangjun R., Wenjie X., Congpeng H., Breakdown voltage prediction of rod-plane gap in rain condition based on support vector machine, 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Chengdu, China, pp. 1–4 (2016).
- [20] Zhibin Q., Jiangjun R., Chao L., Qi J., Daochun H.D., Discharge voltage prediction of complex gaps for helicopter live-line work: An approach and its application, Electric Power Systems Research, vol. 164, pp. 139–148 (2018), DOI: 10.1016/j.epsr.2018.07.034.
- [21] Chih-Chung C., Chih-Jen L., LIBSVM: A Library for Support Vector Machines, ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 1–27 (2011), DOI: 10.1145/1961189.1961199.
- [22] Zhibin Q., Jiangjun R., Wenjie X., Congpeng H., Energy storage features and a predictive model for switching impulse flashover voltages of long air gaps, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, no. 5, pp. 2703–2711 (2017), DOI: 10.1109/TDEI.2017.006397.
- [23] Paris L., Cortina R., Switching and Lightning Impulse Discharge Characteristics of Large Air Gaps and Long Insulator Strings, IEEE Transactions on Power Apparatus and Systems, vol. PAS-87, no. 4, pp. 947–957 (1968), DOI: 10.1109/TPAS.1968.292069.
- [24] Live working – Minimum approach distances for a.c. systems in the voltage range 72.5 kV to 800 kV – A method of calculation, IEC 61472 (2013).
- [25] Zhibin Q., Xuezong W., Jiangjun R., Application of a SVR model to predict lightning impulse flashover voltages of parallel gaps for insulator strings, IEEJ Transactions on Electrical and Electronic Engineering, vol. 14, no. 10, pp. 1455–1462 (2019), DOI: 10.1002/tee.22963.
- [26] Zhibin Q., Louxing Z., Yan L., Jianben L., Huasheng H., Xiongjian Z., Electrostatic Field Feature Selection Technique for Breakdown Voltage Prediction of Sphere Gaps Using Support Vector Regression, IEEE transactions on magnetics, vol. 57, no. 6, pp. 1–4 (2021), DOI: 10.1109/TMAG.2021.3074035
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f5934fe-ad23-4f96-a6a4-8a860ce8eaa7