PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of cations on rare earth adsorption and desorption in binding sites of montmorillonite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The exchangeability of rare earth (RE) in weathered crust elution-deposited rare earth ores largely depends on its interaction with clay minerals, which may be significantly influenced by various cations. Therefore, the effects of K+, Ca2+ and Al3+ on RE3+ adsorption and desorption in binding sites of montmorillonite (MMT) were investigated. Through the pre-saturation, the interlayer ions of MMT had been replaced by K+, Ca2+ or Al3+. RE3+ can adsorb on the interlayer sites of Ca-MMT and K-MMT, but nearly not Al-MMT. The basal spacing of Ca-MMT is larger than K-MMT, which provides a smaller hinder effect of interlayer collapse for the interlayer diffusion of RE3+. The adsorption capacity followed the order: Ca-MMT>K-MMT>Al-MMT and La3+>Y3+>Eu3+. It can predict that the grade of the exchangeable RE in ores abundant in Ca2+ is the most, followed by the ore rich in K+ and Al3+ the least. Clay minerals tend to adsorb light RE and hard to adsorb middle and heavy RE. The reversibility of RE adsorbed in interlayers, especially in collapsed interlayers, is far worse than that on externals. The desorption rates of RE were in the order of RE-Al-MMT>RE-K-MMT>RE-Ca-MMT and Eu3+>Y3+>La3+. For the desorption of interlayer RE3+, NH4+ is better than Mg2+ because the larger change of the basal spacings (Δd) provides more minor activation energy barriers (ΔE) for NH4+ diffusion within interlayers. It can enrich the metallogeny theory of weathered crust elution-deposited rare earth ores and provide a certain theoretical basis for its efficient exploitation.
Rocznik
Strony
art. no. 168280
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
  • Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, PR China
autor
  • Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, PR China
autor
  • Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, PR China
  • Key Laboratory for Green Chemical Process of Ministry of Education, School of Resources & Safety Engineering, Wuhan Institute of Technology, Wuhan 430073, Hubei, PR China
autor
  • Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, PR China
autor
  • Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, PR China
autor
  • Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, PR China
autor
  • Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, PR China
autor
  • Key Laboratory for Green Chemical Process of Ministry of Education, School of Resources & Safety Engineering, Wuhan Institute of Technology, Wuhan 430073, Hubei, PR China
Bibliografia
  • ALSHAMERI, A., HE, H.P., XIN, C., ZHU, J.X., WEI, X.H., ZHU, R.L., WANG, H.L., 2019. Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: Adsorption operative parameters. Hydrometallurgy 185, 149-161.
  • BENEDICTO, A., MISSANA, T., FERNÁNDEZ, A.M., 2014. Interlayer collapse affects on cesium adsorption onto illite.Environ. Sci. Technol. 48(9), 4909-4915.
  • CHEN, Z., ZHANG, Z.Y., HE, Z.Y., CHI, R.A., 2018. Mass transfer process of leaching weathered crust elution-deposited rare earth ore with magnesium salts. Physicochem. Probl. Miner. Process. 54(3), 1004-1013.
  • CHEN, Z.H., 2011. Global rare earth resources and scenarios of future rare earth industry. J. Rare Earth 29(1), 1-6.
  • CHI, R.A., TIAN, J., 2008. Weathered crust elution-deposited rare earth ores. New York: Nova Science Publishers.
  • CHI, R.A., TIAN, J., LI Z.J., PENG, C., WU Y.X., LI S.R., WANG, C.W., ZHOU Z.A., 2005.Existing state and partitioning of rare earth on weathered ores. J. Rare Earth 23(6), 756-759.
  • CHI, R.A., WANG, D.Z., 2014. Rare earth mineral processing. Beijing: Science Press.
  • COLEMAN, N.T., LEWIS, R.J., CRAIG, D., 1963. Sorption of cesium by soils and its displacement by salt solutions. Soil Sci. Soc. Am. J. 27, 290-294.
  • COPPIN, F., BERGER, G., BAUER, A., CASTET, S., LOUBET, M., 2002. Sorption of lanthanides on smectite and kaolinite. Chem. Geol. 182, 57-68.
  • DZENE, L., FERRAGE, E., VIENNET, J.C., TERTRE, E., HUBERT, F., 2017. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments. Sci. Rep-UK. 7(1), 1-12.
  • DZENE, L., TERTRE, E., HUBERT, F., FERRAGE, E., 2015. Nature of the sites involved in the process of cesium desorption from vermiculite.J. Colloid Interf. Sci. 455, 254-260.
  • FAN, Q.H., TANAKA, M., TANAKA, K., SAKAGUCHI, A., TAKAHASHI, Y., 2014. An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility. Geochim. Cosmochim. Ac. 135, 49-65.
  • FENG, J., YU, J.X., HUANG, S.X., WU, X.Y., ZHOU, F., XIAO, C.Q., XU, Y.L., CHI, R.A., 2021. Effect of potassium chloride on leaching process of residual ammonium from weatheredcrust elution-deposited rare earth ore tailings. Miner. Eng. 163, 1-8.
  • HE, Z.Y., ZHANG, Z.Y., YU, J.X., XU, Z.G., XU, Y.L., ZHOU, F., CHI, R.A., 2016. Column leaching process of rare earth and aluminum from weathered crust elution-deposited rare earth ore with ammonium salts. T. Nonferr. Metal Soc. 26, 3024-3033.
  • HUANG, S.X., FENG, J., YU, J.X., WANG, Y., LIU, J.Q., CHI, R.A., HOU, H.B., 2021. Adsorption and desorption performances of ammonium on the weathered crust elution-deposited rare earth ore. Colloid Surface A. 613, 126-139.
  • KANAZAWA, Y., KAMITANI, M.,2006. Rare earth minerals and resources in the world. J. Alloy Compd. 408, 1339-1343.
  • KRISHNA, G.B., SUSMITA, S.G., 2009. Calcined tetrabutylammonium kaolinite and montmorillonite and adsorption of Fe(II), Co(II) and Ni(II) from solution. Appl. Clay Sci. 46(2), 216–221.
  • LEE, J., PARK, S.M., JEON, E.K., BAEK, K., 2017. Selective and irreversible adsorption mechanism of cesium on illite. Appl. Geochem. 85, 188-193.
  • LI, Y.X., 2014. Ion adsorption type rare earth resources and green extraction. Beijing: Chemical Industry Press.
  • MARCUS Y., 1985. Ion solvation. New York: John Wiley & Sons Ltd., USA.
  • MOLDOVEANU, G.A., PAPANGELAKIS, V.G., 2012. Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy. 117-118, 71-78.
  • PESTANA, L.R., KOLLURI, K., HEAD-GORDON, T., LAMMERS, L.N., 2017. Direct exchange mechanism for interlayer ions in non-swelling clays. Environ. Sci. Technol.51, 393-400.
  • POPE, C.G., 1997. X-ray diffraction and the Bragg equation. J. Chem. Educ. 74, 129-131.
  • RIGOL, A., VIDAL, M., RAURET, G., 1999. Effect of the ionic status and drying on radiocesium adsorption and desorption in organic soils. Environ. Sci. Technol. 33, 3788-3794.
  • SAWHNEY, B. L.,1972. Selective sorption and fixation of cations by clay minerals: A review. Clays Clay Miner. 20, 93-100.
  • SINITSYN, V.A., AJA, S.U., KULIK, D.A., WOOD, S.A., 2000. Acid–base surface chemistry and sorption of some lanthanides on K+-saturated Marblehead illite: I. Results of an experimental investigation. Geochim. Cosmochim. Ac. 64, 185-194.
  • TANSEL, B., 2012. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119-126.
  • TANSEL, B., SAGER, J., RECTOR, T., GARLAND, J., STRAYER, R.F., LEVINE, L., ROBERTS, M., HUMMERICK, M., BAUER, J.,2006. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 51(1), 40-47.
  • TERTRE, E.; FERRAGE, E.; BIHANNIC, I.; MICHOT, L.J.; PRÊT, D., 2011. Influence of the ionic strength and solid/solution ratio on Ca(II)-for-Na+ exchange on montmorillonite. Part 2: Understanding the effect of the m/V ratio. Implications for pore water composition and element transport in natural media. J. Colloid Interf. Sci. 363(1), 334–347.
  • TIAN, J., TANG, X.K., YIN, J.Q., LUO, X.P., RAO, G.H., JIANG, M.T., 2013. Process optimization on leaching of a lean weathered crust elution-deposited rare earth ores. Int. J. Miner. Process. 119, 83-88.
  • TOMBACZ, E., SZEKERES, M., 2004. Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Appl. Clay Sci. 27(1-2), 75-94.
  • WAN, Y.X., LIU, C.Q., 2006. The effect of humic acid on the adsorption of REEs on kaolin. Colloid Surface A. 290(1-3), 112-117.
  • XIAO, Y.F., CHEN, Y.Y., FENG, Z.Y., HUANG, X.W., HUANG, L., LONG, Z.Q., CUI, D.L., 2015a. Leaching characteristics of ion-adsorption type rare earths ore with magnesium sulfate. T. Nonferr. Metal Soc. 25(11), 3784-3790.
  • XIAO, Y.F., FENG, Z.Y., HU, G.H., HUANG, L., HUANG, X.W., CHEN, Y.Y., ZHIQI, LONG, Z.Q.,2016a. Reduction leaching of rare earth from ion-adsorption type rare earths ore with ferrous sulfate. J. Rare Earth34(9), 917-923.
  • XIAO, Y.F., FENG, Z.Y., HUANG, X.W., HUANG, L., CHEN, Y.Y., WANG, L.S., LONG, Z.Q.,2015b. Recovery of rare earths from weathered crust elution-deposited rare earth ore without ammonia-nitrogen pollution: I. leaching with magnesium sulfate. Hydrometallurgy. 153, 58-65.
  • XIAO, Y.F., HUANG, L., LONG, Z.Q., FENG, Z.Y., WANG, L.S., 2016b. Adsorption ability of rare earth elements on clay minerals and its practical performance. J. Rare Earth. 34(5), 543-548.
  • XIAO, Y.F., LAI, F.G., HUANG, L., FENG, Z.Y., LONG,Z.Q.,2017. Reduction leaching of rare earth from ion-adsorption type rare earths ore: II. Compound leaching. Hydrometallurgy 173, 1-8.
  • XIAO, Y.F., LIU, X.S., FENG, Z.Y., HUANG, X.W., HUANG, L., CHEN, Y.Y., WU, W.Y., 2015c. Role of minerals properties on leaching process of weathered crust elution-deposited rare earth ore. J. Rare Earth. 33(5), 545-552.
  • XU, Q.H., SUN, Y.Y., YANG, L.F., LI, C.C., ZHOU, X.Z., CHEN, W.F., LI, Y.X., 2019. Leaching mechanism of ion-adsorption rare earth by mono valence cation electrolytes and the corresponding environmental impact. J. Clean. Prod. 211, 566-573.
  • YANG, L.F., LI, C.C., WANG, D.S., LI, F.Y., LIU, Y.Z., ZHOU, X.Z., LIU, M.B., WANG, X.F., LI, Y.X., 2019. Leaching ion adsorption rare earth by aluminum sulfate for increasing efficiency and lowering the environmental impact. J. Rare Earth. 37(4), 429-436.
  • YANG, M.J., LIANG, X.L., MA, L.Y., HUANG, J., HE, H.P., ZHU, J.X., 2019. Adsorption of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite. Chem. Geol. 525, 210-217.
  • YIN, X.B., WANG, X.P., WU, H., TAKAHASHI, H., INABA, Y., OHNUKI, T., TAKESHITA, K., 2017. Effects of NH4+, K+, Mg2+, and Ca2+on the cesium adsorption/desorption in binding sites of vermiculitized biotite. Environ. Sci. Technol. 51, 13886-13894.
  • YU, B.Z., HU, Z.Y., ZHOU, F., FENG, J., CHI, R.A., 2019. Lanthanum (III) and yttrium (III) adsorption on montmorillonite: The role of aluminum ion in solution and minerals. Miner. Process. Ext. Met. Rev. 41(2), 1-10.
  • ZHAO, X.Y., ZHANG, Y.Y.,1990. Analysis of clay minerals and clay minerals. Beijing: Ocean Press.
  • ZHOU, F., FENG, J., XIE, X., WU, B.H., LIU, Q., WU, X.Y., CHI, R.A., 2019. Adsorption of lanthanum (III) and yttrium (III) on kaolinite: kinetics and adsorption isotherms. Physicochem. Probl. Mi. 55(4), 928-939.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f53168d-7c99-4411-afea-6aafb5e65a33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.