PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geogebra and problems of tangent circles

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are many mathematical programmes for teaching and learning geometry from middle school to the university level. Dynamic software package Geogebra can help students to explore and understand more concepts in geometry on their own. In this paper we are concentrating in one of the most interesting and less known two-dimensional transformations like inversion with respect to a circle supported by GeoGebra. The use of this transformation through GeoGebra makes possible a number of elegant solutions to classical construction problems in geometry. Contribution of this paper is presentation of some problems which require the construction of the circle tangent to given circles.
Twórcy
autor
  • Catholic University in Ružomberok, Department of Mathematics, Faculty of Education, Place A. Hlinka 56/1, 034 01 Ružomberok, Slovakia
Bibliografia
  • [1] I. Ya. Bakel’man, Inversions, Chicago, IL: University of Chicago Press, 1974.
  • [2] M. Billich, Circle inversion and problems on tangent circles, In: Proceedings of International Congress IMEM 2009, Catholic University in Ružomberok, 2009, 492- 496.
  • [3] H. S. M. Coxeter, Introduction to geometry, John Wiley & Sons., 1961.
  • [4] D. Gisch; J. M. Ribando, Apollonius’ Problem: A Study of Solutions and Their Connections, American Journal of Undergraduate Research 3, 2004, 15–25.
  • [5] Z. Sklenáriková, K metódam riešenia Apolloniovej úlohy, In: Matematika v proměnách veku III, Edícia Dějiny matematiky, Praha, 2004, 45-55.
  • [6] Z. Sklenáriková, J. Čižmár, Elementárna geometria euklidovskej roviny, FMFI UK Bratislava, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f500764-73e9-455a-90b2-8f415b64f0fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.