PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Bioaugmentation Strategy on the SBR Performance Treating Reject Water and Municipal Wastewater Under Various Temperature Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the effect of bioaugmentation on the sequencing batch reactor (SBR) performance while treating municipal wastewater and reject water under various temperature conditions was examined. Two lab-scale SBRs, each with the active volume of 8 L were used to perform this research. For bioaugmentation, a mixture of wildliving Bacteria and Archaea in a dose 0.25 mL was added to SBR A, while SBR B was a control one. Both reactors were fed with a mixture of wastewater and 13% v/v reject water. During the experiment, 5 phases with different temperature range were distinguished, each one lasted 14 d. The temperatures were investigated in 5°C increments, i.e. 20, 25, 30, 25 and 20°C. The obtained results indicated that in the bioaugmented reactor (SBR A), lower concentrations of NH4+–N, TSS, NO2-–N in effluent were observed as compared to control (SBR B). While for NH4+–N, regardless the temperature, the observed differences were statistically significant. Importantly, in both SBRs, the process was carried out in a stable way.
Rocznik
Strony
46--56
Opis fizyczny
Bibliogr. 67 poz., rys., tab.
Twórcy
  • Lublin University of Technology, Faculty of Environmental Engineering, Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Fundamentals of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
Bibliografia
  • 1. Al-Hazmi H., Grubba D., Majtacz J. and Kowal P. 2019. Process Performance and Microorganisms Community Composition under Different C/N Ratio. Water, 11, 1–17.
  • 2. Al-Hazmi H., Xi L., Majtacz J., Kowal P., Xie L. and Mąkinia J. 2021. Optimization of the Aeration Strategies in a Deammonification Sequencing Batch Reactor for Efficient Nitrogen Removal and Mitigation of N2O Production. Environ. Sci. Technol., 55, 1218–1230.
  • 3. AlisawiH.A.O. 2020. Performance of wastewater treatment during variable temperature. Appl. Water Sci., 10, 1–6.
  • 4. Almeida C.M.R., Oliveira T., Reis I., Gomes C.R. and Mucha A.P. 2017. Bacterial community dynamic associated with autochthonous bioaugmentation for enhanced Cu phytoremediation of salt-marsh sediments. Mar. Environ. Res., 132, 68–78.
  • 5. Babko R., Jaromin-Gleń K., Łagód G., Pawłowska M. and Pawłowski A. 2016. Effect of drilling mud addition on activated sludge and processes in sequencing batch reactors. Desalin. Water Treat., 57, 1490–1498.
  • 6. Barbusiński K., Szeląg B. and Studziński J. 2020. Simulation of the influence of wastewater quality indicators and operating parameters of a bioreactor on the variability of nitrogen in outflow and bulking of sludge: Data mining approach. Desalin. Water Treat., 186, 134–143.
  • 7. Bartkiewicz L., Szeląg B. and Studziński, J. 2016. Impact assessment of input variables and ANN model structure on forecasting wastewater inflow into sewage treatment plants,OchronaŚrodowiska, 38, 2, 29–36. (in Polish)
  • 8. Boon N., Top E.M., Verstraete W. and Siciliano S.D. 2003. Bioaugmentation as a tool to protect the structure and function of an activated-sludge microbial community against a 3-chloroaniline shock load. Appl. Environ. Microbiol., 69, 1511–1520.
  • 9. Boonnorat J., Techkarnjanaruk S., Honda R., Angthong S., Boonapatcharoen N., Muenmee S. andPrachanurak, P. 2018. Use of aged sludge bioaugmentation in two-stage activated sludge system to enhance the biodegradation of toxic organic compounds in high strength wastewater. Chemosphere, 202, 208–217.
  • 10. Byliński H., Sobecki A. and Gebicki J. 2019. The use of artificial neural networks and decision trees to predict the degree of odor nuisance of post-digestion sludge in the sewage treatment plant process. Sustain.,11, 4407.
  • 11. Czarnota J., Tomaszek J.A., Masłoń A., Piech A. and Łagód G. Powdered Ceramsite and Powdered Limestone Use in Aerobic Granular Sludge Technology. Materials, 13, 3894.
  • 12. Drewnowski J., Remiszewska-Skwarek A., Duda S. and Łagód G. 2019. Aeration process in bioreactors as the main energy consumer in a wastewater treatment plant. Review of solutions and methods of process optimization. Processes, 7, 311.
  • 13. Grabas M., Tomaszek J., Czerwieniec E., Masłoń A. and Łuczyszyn, J. 2016. Application of a biopreparation with cultures of effective microorganisms to the processing of wastewater sludge on a semiindustrial scale. Environ. Prot. Eng., 42, 33–44.
  • 14. Gray N.D., Miskin I.P., Kornilova, O., Curtis T.P. and Head I.M. 2002. Occurrence and activity of archaea in aerated activated sludge wastewater treatment plants. Environ. Microbiol., 4, 158–168.
  • 15. Guz Ł., Łagód G., Jaromin-Gleń K., Suchorab Z., Sobczuk H. and Bieganowski A. 2015. Application of gas sensor arrays in assessment of wastewater purification effects. Sensors, 15, 1–21.
  • 16. Head M.A. and Oleszkiewicz J.A. 2004. Bioaugmentation for nitrification at cold temperatures. Water Res., 38 (3), 523–530.
  • 17. Henze M., Van Loosdrecht M.C.M., Ekama G. andBrdjanovic D. 2008. Biological wastewater treatment: principles, modelling and design, IWA Publishing, London.
  • 18. Herrero M. and Stuckey D.C. 2015.Bioaugmentation and its application in wastewater treatment: A review. Chemosphere, 140, 119–128.
  • 19. Jaromin-Glen K., Babko R., Kuzmina T., Danko Y., Łagód G., Polakowski C., Szulżyk-Cieplak J. and Bieganowski A. 2020. Contribution of prokaryotes and eukaryotes to CO2 emissions in the wastewater treatment process. PeerJ, 2020, 1–14.
  • 20. Jaromin-Glen K., Babko R., Lagód G. and Sobczuk H. 2013. Community composition and abundance of protozoa under different concentration of nitrogen compounds at “Hajdów” wastewater treatment plant. Ecol. Chem. Eng. S, 20, 127–139.
  • 21. Ji J., Kakade A., Zhang R., Zhao S., Khan A., Liu P. and Li X. 2019. Alcohol ethoxylate degradation of activated sludge is enhanced by bioaugmentation with Pseudomonas sp. LZ-B. Ecotoxicol. Environ. Saf., 169, 335–343.
  • 22. Ji J., Kulshreshtha S., Kakade A., Majeed S., Li X. and Liu P. 2020.Bioaugmentation of membrane bioreactor with Aeromonashydrophila LZ-MG14 for enhanced malachite green and hexavalent chromium removal in textile wastewater. Int. Biodeterior. Biodegrad., 150, 104939.
  • 23. Kim I.T., Lee Y.E., Jeong Y. and Yoo Y.S. 2020. A novel method to remove nitrogen from reject water in wastewater treatment plants using a methaneand methanol-dependent bacterial consortium. Water Res., 172, 115512.
  • 24. Kim J.H., Guo X. and Park H.S. 2008. Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation. Process Biochem., 43, 154–160.
  • 25. Kudlek E. and Dudziak M. 2018. The assessment of changes in the membrane surface during the filtration of wastewater treatment plant effluent. Desalin. Water Treat., 128, 298–305.
  • 26. Kv N.S. 2021. Removal of Dyes From Industrial Effluents Using Bioremediation Technique. In: Aravind J., Kamaraj M., Prashanthi Devi M., Rajakumar S. (eds) Strategies and Tools for Pollutant Mitigation.
  • 27. Kwon K., Kim H., Kim W. and Lee J. 2019. Efficient nitrogen removal of reject water generated from anaerobic digester treating sewage sludge and livestock manure by combining anammox and autotrophic Sulfur denitrification processes. Water, 11, 204.
  • 28. Lebiocka M., Montusiewicz A. and Cydzik-Kwiatkowska A. 2018. Effect of bioaugmentation on biogas yields and kinetics in anaerobic digestion of sewage sludge. Int. J. Environ. Res. Public Health, 15, 1717.
  • 29. Lens P.N., De Poorter M.P., CronenbergC.C. and Verstraete W.H. 1995. Sulfate reducing and methane producing bacteria in aerobic wastewater treatment systems. Water Res., 29, 871–880.
  • 30. Liu Z., Xie H., Hu Z., Zhang J., Zhang, J., Sun H. and Lan, W. 2017. Role of Ammonia-Oxidizing Archaea in Ammonia Removal of Wetland Under Low-Temperature Condition. Water. Air. Soil Pollut., 228, 356.
  • 31. Łagód G., Duda S.M., Majerek D., Szutt A. and Dołhańczuk-Śródka A. 2019. Application of electronic nose for evaluation of wastewater treatment process effects at full-scale WWTP. Processes, 7, 251.
  • 32. Ma F., Guo J., Zhao L.J., Chang C.C., Cui D. 2009. Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. Bioresour. Technol., 100 (2), 597–602.
  • 33. Majtacz J., Grubba D., Kowal P. and Czerwionka K. 2020. Possibilities of leachate co-treatment originating from biogas production in the deammonification process. J. Ecol. Eng., 21, 14–19.
  • 34. Majtacz J., Kowal P., Lu X., Al-Hazmi H. and Makinia J. 2017. Adaptation of the activated sludge to the digestate liquors during the nitrification and denitrification processes. J. Ecol. Eng., 18, 104–109.
  • 35. Makinia J., Wells S.A. and Zima P. 2005. Temperature Modeling in Activated Sludge Systems: A Case Study. Water Environ. Res., 77, 525–532.
  • 36. Masłoń A., Czarnota J., Szaja A., Szulżyk-Cieplak J.. and Łagód G. 2020. The enhancement of energy efficiency in a wastewater treatment plant through sustainable biogas use: Case study from Poland. Energies, 13, 6056.
  • 37. Mehrani M.J., Sobotka D., Kowal P., Ciesielski S. and Makinia J. 2020, The occurrence and role of Nitrospira in nitrogen removal systems. Bioresour., 303, 122936.
  • 38. Meyer S.S. and Wilderer P.A. 2004. Reject water: Treating of process water in large wastewater treatment plants in Germany – A case study. J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst. Environ. Eng., 39, 1645–1654.
  • 39. Michalska J., Piński A., Zur J. and Mrozik, A. 2020. Selecting bacteria candidates for the bioaugmentation of activated sludge to improve the aerobic treatment of landfill leachate. Water, 12, 140.
  • 40. Montusiewicz, A. 2014. Co-digestion of sewage sludge and mature landfill leachate in pre-bioaugmented system. J. Ecol. Eng., 15, 98–104.
  • 41. Morgan-Sagastume F. andAllen D.G. 2003. Effects of temperature transient conditions on aerobic biological treatment of wastewater. Water Res., 37, 3590–3601.
  • 42. Mucha Z. and Mikosz J. 2021. Technological characteristics of reject waters from aerobic sludge stabilization in small and medium-sized wastewater treatment plants with biological nutrient removal. Int. J. Energy Environ. Eng., 12, 69–76.
  • 43. Nguye, P.Y., Silva A.F., Reis A.C., Nunes O.C., Rodrigues A.M., Rodrigues J.E., Cardoso V.V., Benoliel M.J., Reis M.A.M., Oehmen A. and Carvalho G. 2019. Bioaugmentation of membrane bioreactor with Achromobacterdenitrificans strain PR1 for enhanced sulfamethoxazole removal in wastewater. Sci. Total Environ., 648, 44–55.
  • 44. Noutsopoulos C., Mamais D., Statiris E., Lerias E., Malamis S. and Andreadakis A. 2018. Reject water characterization and treatment through short-cut nitrification/denitrification: assessing the effect of temperature and type of substrate. J. Chem. Technol. Biotechnol., 93, 3638–3647.
  • 45. Nzila A., Razzak S.A. and Zhu, J. 2016. Bioaugmentation: An emerging strategy of industrial wastewater treatment for reuse and discharge. Int. J. Environ. Res. Public Health, 13, 846.
  • 46. Plaza E., Trela J. and Hultman B. 2001. Impact of seeding with nitrifying bacteria on nitrification process efficiency. Water Sci. Technol., 43, 155–163.
  • 47. Podstawczyk D., Witek-Krowiak A., DawiecLiśniewska A., Chrobot P. and Skrzypczak, D. 2017. Removal of ammonium and orthophosphates from reject water generated during dewatering of digested sewage sludge in municipal wastewater treatment plant using adsorption and membrane contactor system. J. Clean. Prod., 161, 277–287.
  • 48. Regmi P., Miller M.W., Holgate B., Bunce R., Park H., Chandran K., Wett B., Murthy, S. and Bott C.B. 2014. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Res., 57, 162–171.
  • 49. Rodziewicz J., Ostrowska K., Janczukowicz W. and Mielcarek A. 2019. Effectiveness of nitrification and denitrification processes in biofilters treating waste water from de-icing airport runways. Water, 11, 630.
  • 50. Roots P., Sabba F., Rosenthal A.F.; Wang Y., Yuan Q., Rieger L., Yang F., Kozak J.A., Zhang H. and Wells G.F. 2020. Integrated low-energy and low carbon shortcut nitrogen removal with biological phosphorus removal for sustainable mainstream wastewater treatment. Environ. Sci.: Water Res. Technol. ,6, 566–580.
  • 51. Roots P., Wang Y., Rosenthal A.F., Griffin J.S., Sabba F., Petrovich M., Yang F., Kozak J.A., Zhang H. and Wells G.F. 2019. ComammoxNitrospira are the dominant ammonia oxidizers in a mainstream low dissolved oxygen nitrification reactor. Water Res., 157, 396–405.
  • 52. Shahzad M., Khan S.J. and Paul P. 2015. Influence of temperature on the performance of a full-scale activated sludge process operated at varying solids retention times whilst treating municipal sewage. Water, 7, 855–867.
  • 53. Shourjeh M.S., Kowal P., Drewnowski J., Szeląg B., Szaja A. and Łagód G. 2020. Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization. Energies, 13, 5808.
  • 54. Shourjeh M.S., Kowal P., Lu X., Xie L. and Drewnowski J. 2021. Development of strategies for AOB and NOB competition supported by mathematical modeling in terms of successful deammonification implementation for energy-efficient WWTPs. Processes, 9, 562.
  • 55. Sperczyńska E. 2016. Use of Zeolite for Removal of Ammonium Nitrogen from Reject Water. Eng. Prot. Environ., 19, 391–399.
  • 56. Strous M., Van Gerven E., Zheng P., Kuenen J.G. and Jetten M.S.M. 1997. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations. Water Res., 31, 1955–1962.
  • 57. Suschka J. and Grübel K. 2014. Nitrogen in the process of waste activated sludge anaerobic digestion. Arch. Environ. Prot., 40, 123–136.
  • 58. Szaja A. and Szulzyk-Cieplak J. 2020. Influence of bioaugmentation strategy of activated sludge on the co-treatment of reject water and municipal wastewater at a decreasing temperature. J. Ecol. Eng., 21, 97–106.
  • 59. Szaja A., Łagód G., Jaromin-Gleń K. and Montusiewicz A. 2018. The effect of bioaugmentation with Archaea on the oxygen uptake rate in a sequencing batch reactor. Water, 10, 575.
  • 60. Szeląg B. and Barbusiński K.2020. Impact of the selected indicators of the wastewater quality and operating parameters of the biological reactor on the simulation of sludge sedimentation: Probabilistic approach. Desalin. Water Treat., 186, 144–154.
  • 61. Tchobanoglous G., Burton F.L.; and StenselH.D. 2004. Wastewater Engineering: Treatment and Reuse. Metcalf & Eddy, McGraw-Hill Education: New York, NY, USA.
  • 62. van Loosdrecht M.C.M. and Salem S. 2006. Biological treatment of sludge digester liquids. Water Sci. Technol., 53, 11–20.
  • 63. Wett B., Rostek R., Rauch W. and Ingerle K. 1998. pH-controlled reject water treatment. Wat. Sci. Tech.,37, 165–172.
  • 64. Yin Z., Bi X. and Xu C. 2018. Ammonia-oxidizing archaea (AOA) play with ammonia-oxidizing bacteria (AOB) in nitrogen removal from wastewater. Archaea, 2018, 8429145.
  • 65. You J., Das A., Dolan E.M. and Hu Z. 2009.Ammonia-oxidizing archaea involved in nitrogen removal. Water Res., 43, 1801–1809.
  • 66. Young B., Delatolla R., Kennedy K., Laflamme E. andStintzi, A. 2017. Low temperature MBBR nitrification: Microbiome analysis. Water Res., 111, 224–233.
  • 67. Zubrowska-Sudol M., Podedworna J., Sytek-Szmeichel K., Bisak A., Krawczyk P. and Garlicka A. 2018. The effects of mechanical sludge disintegration to enhance full-scale anaerobic digestion of municipal sludge. Therm. Sci. Eng. Prog., 5, 289–295.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f4fa850-226c-41a1-bc74-cb23d6fa9519
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.