Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Mg-Zn-Ca-(Cu,Au) alloys were considered as resorbable materials for orthopedic short- term implants. The aim of this paper was to determine the influence of Au and Cu addition on corrosion properties of Mg69Zn25Ca5Au1, Mg69Zn25Ca5Au0.5Cu0.5 and Mg69Zn25Ca5Cu1 metallic glasses. The analysis of corrosion results allowed to describe the influence of 0.5 and 1 at.% of Au and Cu on the corrosion resistance in artificial physiological fluid. The Mg69Zn25Ca5Au0.5Cu0.5 and Mg69Zn25Ca5Cu1 metallic glasses exhibit lower corrosion resis-tance in comparison with Mg69Zn25Ca5Au1 alloy. The increase of Cu content caused the increase of hydrogen evolution volume and the high cathodic activity. The Mg69Zn25Ca5Au1 metallic glass shows the decrease of hydrogen evolution volume and manifests the low corrosion current density and the high polarization resistance, indicating the high corrosion resistance.
Czasopismo
Rocznik
Tom
Strony
716--723
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Gliwice, Poland
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Gliwice, Poland
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Gliwice, Poland
Bibliografia
- [1] F.A. Rodríguez-González, Biomaterials in Orthopaedic Surgery, 1st ed., ASM International, 2009.
- [2] N. Abidin, B. Rolfe, H. Owen, J. Malisan, D. Martin, J. Hofstetter, P.J. Uggowitzer, A. Atrens, The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91, Corros. Sci. 75 (2013) 354–366.
- [3] Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals, Mater. Sci. Eng. R 77 (2014) 1–34.
- [4] H. Hermawan, Biodegradable Metals. From Concept to Applications, 1st ed., Springer Briefs in Materials, 2012.
- [5] M. Vert, Degradable, biodegradable, and bioresorbable polymers for time-limited therapy, in: Y. Onuma, P.W.J.C. Serruys (Eds.), Bioresorbable Scaffolds: From Basic Concept to Clinical Applications, CRC Press, 2017.
- [6] B. Zhao, X. Qiu, D. Wang, H. Li, X. He, Application of bioabsorbable screw fixation for anterior cervical decompression and bone grafting, Clinics 71 (2016) 320–324.
- [7] https://www.lenntech.com/recommended-daily-intake.htm (accessed 10.02.19).
- [8] Y.S. Wang, M.J. Tan, J.J. Pang, Z.M. Wang, A.W.E. Jarfors, In vitro corrosion behaviors of Mg67Zn28Ca5 alloy: from amorphous to crystalline, Mater. Chem. Phys. 134 (2012) 1079–1087.
- [9] Y. Wang, M.J. Tan, A.W.E. Jarfors, Corrosion performance of melt-spun Mg67Zn28Ca5 metallic glass in artificial sweat, J. Mater. Sci. Eng. 47 (2012) 6586–6592.
- [10] H. Knosp, R.J. Holliday, W. Corti, Gold in dentistry: alloys, uses and performance, Gold Bull. 36 (3) (2003) 93–102.
- [11] R. Doolabh, H.D. Dullabh, L.M. Sykes, A comparison of preload values in gold and titanium dental implant retaining screws, S. Afr. Dent. J. 69 (7) (2014) 316–320.
- [12] http://www.izz.waw.pl/attachments/article/33/ NormyZywieniaNowelizacjaIZZ2012.pdf (accessed 28.02.18).
- [13] Y. Ding, C. Wen, P. Hodgson, Y. Li, Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review, J. Mater. Chem. B 2 (2014) 1912–1933.
- [14] R. Babilas, A. Bajorek, A. Radon, R. Nowosielski, Corrosion study of resorbable Ca60Mg15Zn25 bulk metallic glasses in physiological fluids, Prog. Nat. Sci. Mater. Int. 27 (2017) 627–634.
- [15] Z. Shi, A. Atrens, An innovative specimen configuration for the study of Mg corrosion, Corros. Sci. 53 (2011) 226–246.
- [16] A. Atrens, M. Liu, N.I.Z. Abidin, Corrosion mechanism applicable to biodegradable magnesium implants, Mater. Sci. Eng. B 176 (2011) 1609–1636.
- [17] L. Haifei, P. Shujie Pang, L. Ying, S. Lulu, P.K. Liaw, Z. Tao, Biodegradable Mg–Zn–Ca–Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications, Mater. Des. 67 (2015) 9–19.
- [18] K. Asami, S. Ono, Quantitative X-ray photoelectron spectroscopy characterization of magnesium oxidized in air, J. Electrochem. Soc. 147 (2000) 1408–1413.
- [19] W. Jiao, H.F. Li, K. Zhao, H.Y. Bai, Y.B. Wang, Y.F. Zheng, Development of CaZn based glassy alloys as potential biodegradable bone graft substitute, J. Non-Cryst. Solids 357 (2011) 3830–3840.
- [20] N. Abidin, A.D. Atrens, D. Martin, A. Atrens, Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank's solution at 37 8C, Corros. Sci. 53 (2011) 3542–3556.
- [21] R.T. Nowosielski, K. Cesarz-Andraczke, Impact of 1% gold's and copper's addition on mechanical and corrosion properties of resorbable Mg-based metallic glasses, Adv. Mater. Lett. 8 (5) (2017) 614–619.
- [22] Y. Zhao, J. Zhu, L. Chang, J. Song, X. Chen, X. Hui, Influence of Cu content on the mechanical properties and corrosion resistance of Mg-Zn-Ca bulk metallic glasses, Int. J. Miner. Metall. Mater. 21 (2014) 487–493.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f4dc3ba-9494-4b52-ad86-ef1ee4a5095d