PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Layer Thickness on the Reflectance of a Quasi One-Dimensional Composite Built with Zr55Cu30Ni5Al10 Amorphous Alloy and Epoxy Resin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study examined the impact of the angle of incidence of mechanical waves on various types of quasi one-dimensional superlattice. Binary periodic structure, quasi-periodic distribution of Thue-Morse layers and Severin’s aperiodic multilayer were used. Using the concatenation and recursive rules, the distribution of layers was determined for individual structure types for generation numbers equal to 3, 4 and 5. The structures were selected so that the thickness of the composite was the same for each type of distribution for a given generation number value. Transfer Matrix Method algorithm was used to determine reflectance. The band structure of reflectance has been demonstrated for incidence angles up to 90 degrees at mechanical wave frequencies up to 50 kHz. The existence of wide bands of high reflectance above the acoustic frequencies was demonstrated for the analyzed structures. Increasing the layer thickness caused an inhomogeneous shifts of transmission peaks towards lower frequencies.
Twórcy
  • Czestochowa University of Technology, Department of Mechanics and Fundamentals of Machinery Design, Faculty of Mechanical Engineering and Computer Science, 73 Dąbrowskiego Str., 42-201 Częstochowa, Poland
  • Czestochowa University of Technology, Department of Mechanics and Fundamentals of Machinery Design, Faculty of Mechanical Engineering and Computer Science, 73 Dąbrowskiego Str., 42-201 Częstochowa, Poland
Bibliografia
  • [1] M.N. Armenise, C.E. Campanella, C. Ciminelli, F. Dell’Olio, V.M.N. Passaro, Physcs. Proc. 1 (3), 357-364 (2010), DOI: 10.1016/j.phpro.2010.01.047
  • [2] M. Sigalas, E.N. Economou, J. Sound Vib. 158 (2), 377-382 (1992), https://doi.org/10.1016/0022-460X(92)90059-7
  • [3] S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Phys. Rev. Lett. 71 (13), 2022-2025 (1993), https://doi.org/10.1103/physrevlett.71.2022
  • [4] M.S. Kushwaha, Int. J. Mod. Phys. B 10, 977-1094 (1996).
  • [5] Y. Tanaka, T. Yano, S.-I. Tamur, Wave Motion 44, 501-512 (2007), https://doi.org/10.1016/j.wavemoti.2007.02.009
  • [6] Y. Pennec, B. Djafari-Rouhani, H. Larabi, J. Vasseur, A.-C. Hladky-Hennion, Phys. Status Solidi C 6 (9), 2080-2085 (2009), DOI: 10.1002/pssc.200881760
  • [7] Y.F. Li, F. Meng, S. Li, B. Jia, S. Zhou, X. Huang, Phys. Lett. A 382 (10), 679-684 (2018), https://doi.org/10.1016/j.physleta.2017.12.050
  • [8] V. Pennec, J.O. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, P.A. Deymier, Surf. Sci. Rep. 65 (8), 229-291 (2010), DOI: 10.1016/j.surfrep.2010.08.002
  • [9] X.F. Li, X. Ni, L.A. Feng, M.H. Lu, C. He, Y.F. Chen, Phys. Rev. Lett. 106, 084301 (2011), https://doi.org/10.1103/PhysRevLett.106.084301
  • [10] A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, V. Laude, Appl. Phys. Lett. 84, 4400 (2004), https://doi.org/10.1063/1.1757642
  • [11] D. Richards, D. Pines, J. Sound Vib. 264, 317-342 (2003), DOI: 10.1016/S0022-460X(02)01213-0
  • [12] M. Kafesaki, M.M. Sigalas, N. García, Phys. Rev. Lett. 85 (19), 4044-4047 (2000), https://doi.org/10.1103/PhysRevLett.85.4044
  • [13] J.V. Sanchez-Perez, C. Rubio, R. Martinez-Sala, R. Sanchez-Grandia, V. Gomez, Appl. Phys. Lett. 81 (27), 5240-5242 (2002), DOI: 10.1063/1.1533112
  • [14] S. Alagoz, O.A. Kaya, B.B. Alagoz, Appl. Acoust. 70, 1400-1405 (2009), DOI:10.1016/j.apacoust.2009.06.001
  • [15] O.R. Bilal, M.I. Hussein, Phys. Rev. E 84 (6), 065701 (2011), DOI: 10.1103/PhysRevE.84.065701
  • [16] L. Sanchis, F. Cervera, J. Sánchez-Dehesa, J.V. Sánchez-Pérez, C. Rubio, R. Mártinez-Sala, J. Acoust. Soc. Am. 109, 2598-2605 (2001), DOI: 10.1121/1.1369784
  • [17] S. Garus, W. Sochacki, J. App. Math. Comp. Mech. 17 (4), 19-24 (2018), DOI: 10.17512/jamcm.2018.4.03
  • [18] V.M. García-Chocano, S. Cabrera, J. Sánchez-Dehesa, Appl. Phys. Lett. 101, 184101 (2012), https://doi.org/10.1063/1.4764560
  • [19] S.M. Dimitrijevi ́c, V.M. García-Chocano, F. Cervera, E. Roth, J. Sánchez-Dehesa, Materials 12, 2806 (2019), DOI: 10.3390/ma12172806
  • [20] F. Morandi, M. Miniaci, A. Marzani, L. Barbaresi, M. Garai, Appl. Acoust. 114, 294-306 (2016), DOI: 10.1016/j.apacoust.2016.07.028
  • [21] X. Yu, Z. Lu, T. Liu, L. Cheng, J. Zhu, F. Cui, J. Sound Vib. 449, 140-156 (2019), https://doi.org/10.1016/j.jsv.2019.02.042
  • [22] W.-Q. Zhang, X. Zhang, F.-G. Wu, Y.-W. Yao, S.-F. Lu, H.-F. Dong, Z.-F. Mu, J.-B. Li, Phys. Lett. A 382, 423-427 (2018), DOI: 10.1016/j.physleta.2017.12.014
  • [23] O. Dazel, J.P. Groby, B. Brouard, C. Potel, J. Appl. Phys. 113, 083506 (2013), http://dx.doi.org/10.1063/1.4790629
  • [24] S. Garus, W. Sochacki, M. Bold, Engineer. Mechan. 229-232 (2018), DOI: 10.21495/91-8-229
  • [25] M.M. Sigalas, C.M. Soukoulis, Phys. Rev. B 51, 2780 (1995), https://doi.org/10.1103/PhysRevB.51.2780
  • [26] P.G. Luan, Z. Ye, Phys. Rev. E 63 (6), 066611 (2001), https://doi.org/10.1103/PhysRevE.63.066611
  • [27] S. Garus, W. Sochacki, J. App. Math. Comp. Mech. 16 (4), 17-27 (2017), DOI: 10.17512/jamcm.2017.4.02
  • [28] M.I. Pop, N. Cretu, Wave Motion 65, 105-111 (2016), https://doi.org/10.1016/j.wavemoti.2016.04.011
  • [29] J. Madrigal-Melchor, A. Enciso-Muñoz, D. Contreras-Solorio, X. Saldaña-Saldaña, R.A. Reyes-Villagrana, Open Journal of Acoustics 7, 39-51 (2017) DOI: 10.4236/oja.2017.73005
  • [30] K. Gruszka, M. Nabiałek, M. Szota, K. Bloch, J. Gondro, P. Pietrusiewicz, A.V. Sandu, A.M. Mustafa Al. Bakri, S. Walters, K. Walters, S. Garus, M. Dośpiał, J. Mizera, Arch. Metall. Mater. 61 (2), 641-644 (2016), DOI: 10.1515/amm-2016-0109
  • [31] K. Bloch, M. Nabiałek, M. Dośpiał, S. Garus, Arch. Metall. Mater. 60 (1), 7-10 (2015), DOI: 10.1515/amm-2015-0001
  • [32] S. Garus, M. Nabiałek, J. Garus, Acta Phys. Pol. A 126 (4), 960-962 (2014). DOI: 10.12693/aphyspola.126.960
  • [33] F. Mikio, W. Xinmin, I. Akihisa, J. Non Cryst. Solids 356(33-34), 1707-1710 (2010), https://doi.org/10.1016/j.jnoncrysol.2010.06.025
  • [34] Y. Wang, W. Song, E. Sun, R. Zhang, W. Cao, Physica E Low Dimens. Syst. Nanostruct. 60, 37-41 (2014) https://doi.org/10.1016/j.physe.2014.02.001
  • [35] M. Severin, M. Dulea, R. Riklund, J. Phys.: Condens. Matter. 1, 8851-8858 (1989), https://doi.org/10.1088/0953-8984/1/45/010
  • [36] D. Huang, G. Gumbs, M. Kolář, Phys. Rev. B 46 (18), 11479-11486 (1992), doi: 10.1103/PhysRevB.46.11479
  • [37] M. Wolkesson, Evaluation of Impedance Tube Methods - A two microphone in-situ method for road surfaces and the three microphone transfer function method for porous materials, Chalmers University of Technology, Göteborg, Sweden 2013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f4b2c67-ffed-4f13-a516-6ee5219a91fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.