Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A knowledge discovery system is prone to yielding plenty of patterns, presented in the form of rules. Sifting through to identify useful and interesting patterns is a tedious and time consuming process. An important measure of interestingness is: whether or not the pattern can be used in the decision making process of a business to increase profit. Hence, actionable patterns, such as action rules, are desirable. Action rules may suggest actions to be taken based on the discovered knowledge. In this way contributing to business strategies and scientific research. The large amounts of knowledge in the form of rules presents a challenge of identifying the essence, the most important part, of high usability. We focus on decreasing the space of action rules through generalization. In this work, we present a new method for computing the lowest cost of action rules and their generalizations. We discover action rules of lowest cost by taking into account the correlations between individual atomic action sets.
Wydawca
Czasopismo
Rocznik
Tom
Strony
399--412
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Department of Computer Science, University of North Carolina at Charlotte, USA
autor
- Department of Computer Science, University of North Carolina at Charlotte, USA
autor
- Department of Computer Science, University of North Carolina at Charlotte, USA
autor
- Department of Computer Science, University of North Carolina at Charlotte, USA
Bibliografia
- [1] He Z, Xu X, Deng S, and Ma R. Mining action rules from scratch, Expert Systems with Applications, 2005. 29(3): 691-699. URL https://doi.org/10.1016/j.eswa.2005.04.031.
- [2] Geng L, and Hamilton HJ. Interestingness measures for data mining: a survey, ACM Computing Surveys, 2006. 38(3): Article 9. doi:10.1145/1132960.1132963.
- [3] Yang Q, Yin J, Lin C, and Chen T. Postprocessing decision trees to extract actionable knowledge, In: Proceedings of ICDM’03. 2003. doi:10.1109/ICDM.2003.1251008.
- [4] Wang K, Zhou S, and Han J. Profit Mining: From Patterns to Actions, In: Proceedings of the 8th International Conference on Extending Database Technology: Advances in Database Technology. 2002 pp.70-87. doi:10.1007/3-540-45876-X_7.
- [5] Ras Z, Wyrzykowska E, and Wasyluk H. ARAS: Action Rules discovery based on Agglomerative Strategy, In: Post-Proceedings of 2007 ECML / PKDD Third International Workshop on Mining Complex Data (MCD 2007). 2007 pp. 196-208. doi:10.1007/978-3-540-68416-9_16.
- [6] Tzacheva AA, and Ras ZW. Action rules mining. International Journal Of intelligent Systems, 2005. 20(6):719-736. URL https://doi.org/10.1002/int.20092.
- [7] Tzacheva AA, and Ras ZW. Constraint Based Action Rule Discovery with Single Classification Rules, In: Proceedings of 2007 Joint Rough Set Symposium (JRS07) Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. 2007 pp. 322-329. doi:10.1007/978-3-540-72530-5_38.
- [8] Ras Z, and Wieczorkowska A. Action Rules: how to increase profit of a company, In: Principles of Data Mining and Knowledge Discovery, (Eds. D.A. Zighed, J. Komorowski, J. Zytkow), Proceedings of PKDD’00, Lyon, France, LNAI, No. 1910, Springer, 2000 pp. 587-592. doi:10.1007/3-540-45372-5_70.
- [9] Tsay L-S, and Ras ZW. Action rules discovery system DEAR, method and experiments, Journal of Experimental and Theoretical Artificial Intelligence, Taylor and Francis, 2005. 17(1-2):119-128. URL https://doi.org/10.1080/09528130512331315855.
- [10] Dardzinska A, and Ras ZW. Cooperative discovery of interesting action rules, In: Proceedings of the Seventh International Conference on Flexible Query Answering Systems (FQAS). 2006 pp. 489-497. doi:10.1007/11766254_41.
- [11] Jiang Y, Wang K, Tuzhilin A, and Fu AW-C. Mining patterns that respond to actions, In: Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05). 2005. doi:10.1109/ICDM.2005.99.
- [12] Yang Q, and Cheng H. Mining case bases for action recommendation, In: Proceedings of the IEEE International Conference on Data Mining (ICDM’02). 2002. doi:10.1109/ICDM.2002.1183997.
- [13] Hilderman RJ, and Hamilton HJ. Knowledge discovery and measures of interest, Kluwer Academic. 2001. ISBN:0792375076.
- [14] Wang K, Yang J, and Muntz R. STING: A statistical information grid approach to spatial data mining, In: Proceedings of 23rd International Conference on Very Large Data Bases (VLDB’97). 1997 pp. 186-195. ISBN:1-55860-470-7.
- [15] Tzacheva AA. Diversity of Summaries for Interesting Action Rule Discovery, In: Proceedings of Intelligent Information Systems (IIS 2008). 2008.
- [16] Hajja A, Wieczorkowska A, Ras ZW, and Gubrynowicz R. Pair-based Object-driven Action Rules, In: New Frontiers in Mining Complex Patterns, NFMCP 2012, ECML/PKDD Workshop, Bristol, United Kingdom, September, 2012, LNAI 7765, Springer, 2013 pp.79-93. doi:10.1007/978-3-642-37382-4_6.
- [17] Tzacheva AA. Algorithm for Generalization of Action Rules to Summaries, in Special issue on Intelligent Information Processing and Web Mining, International Journal of Control and Cybernetics (invited paper), Klopotek, M. A., Przepirkowski A., Wierzchon S. T. (Eds), Systems Research Institute of Polish Academy of Sciences, 2010. 39(2):457-468.
- [18] Hajja A, Ras ZW, Wieczorkowska A. Hierarchical Object-driven Action Rules, in Special issue on Mining Complex Patterns, A. Appice et al (Eds), Journal of Intelligent Information Systems, Springer, 2014. 42(2):207-232. doi:10.1007/s10844-013-0291-2.
- [19] Lichman M. UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science, 2013. URL http://archive.ics.uci.edu/ml.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f48e757-e23a-403c-bd73-6467d6fcfe1c