PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potentialities of Reducing Textile Waste in the Manufacturing of Garments from Striped Fabrics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Możliwosci zmniejszenia ilości odpadów tekstylnych w produkcji odzieży z tkanin w paski
Języki publikacji
EN
Abstrakty
EN
Certain material losses are still tolerated in traditional garment manufacturing process. Only 80% of textile materials purchased by industry companies are used for their main purpose. The other 20% lost in garment cutting process are landfilled, incinerated, reused or recycled. Further technical progress is not able to minimise fabric waste significantly. Possibilities to reduce fabric waste have to be found in the garment designing and development process. Styles from cross directionally striped fabrics have raised material losses because of their specific design and fabric pattern. The 1st experiment with a striped T-shirt showed that fabric waste could be critical due to disconformities of the style design with the fabric pattern. The 2nd experiment showed that it is possible to reduce fabric waste by conforming the length of the style with the fabric pattern. Length tolerance – acceptable slight variations in the length of the style which does not change the design and visual perception of the garment style should be determined by designers and used in industry processing of manufacturing orders. The authors of the article developed methodology to perform the work process in an automated way. Certain manipulations of the design of a garment style directly in its manufacturing process have never been done before, however they could be very effective in producing medium and large manufacturing orders as they would help to reduce post-industrial fabric waste, material consumption, as well as the product cost.
PL
Pewne straty materiałowe są nadal tolerowane w tradycyjnych procesach produkcji odzieży. Jedynie 80% materiałów włókienniczych kupowanych przez firmy przemysłowe jest wykorzystywane do ich głównego celu. Pozostałe 20% utracone w procesie cięcia odzieży trafia na wysypisko, jest spalane, lub ponownie wykorzystywane i poddawane recyklingowi. Dalszy postęp techniczny nie jest w stanie znacząco zminimalizować marnotrawstwa tkaniny. Możliwości ograniczenia marnotrawstwa tkanin należy znaleźć w procesie projektowania i rozwoju odzieży. Projektowanie odzieży z tkanin w poprzeczne prążki powoduje wzrost strat materiałowych ze względu na specyficzny projekt wyrobów i wzór tkaniny. Pierwszy eksperyment z koszulką w paski pokazał, że marnotrawstwo tkaniny może powstać ze względu na niezgodności projektu z wzorem tkaniny. Drugi eksperyment pokazał, że można zmniejszyć marnotrawstwo tkaniny, dopasowując fason do wzoru tkaniny. Tolerancja długości – dopuszczalne niewielkie różnice w długości kroju, które nie zmieniają projektu i wizualnej percepcji stylu ubioru, powinny być określone przez projektantów i stosowane w przemyśle przy realizacji zleceń produkcyjnych. Autorzy artykułu opracowali metodologię prowadzenia procesu pracy w sposób zautomatyzowany. Pewne manipulacje przy projektowaniu stylu ubioru bezpośrednio w procesie produkcyjnym nigdy wcześniej nie były wykonywane, jednak mogą być bardzo skuteczne w produkcji średnich i dużych zamówień produkcyjnych, ponieważ pomogłyby zmniejszyć ilość poprzemysłowych odpadów tkanin, zużycia materiałów, a także obniżyć koszt produktu.
Rocznik
Strony
58--63
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • University of Novi Sad, Technical Faculty “Mihajlo Pupin”, Department of Textile Sciences and Clothing Design, Serbia
  • Pamukkal University, Faculty of Engineering, Department of Textile Engineering, Turkey
  • Riga Technical University, Institute of Design Technologies, Faculty of Materials Science and Applied Chemistry, Kipsalas 6, Riga, Latvia
Bibliografia
  • 1. Bukhari MA, Carrasco-Gallego R, Ponce-Cueto E. Developing a National Program for Textiles and Clothing Recovery. Waste Management & Research 2018; 36(4): 321-331. DOI: 10.1177/0734242X18759190.
  • 2. Dobilaite V, Mileriene G, Juciene M, Saceviciene V. Investigation of Current State of Pre-Consumer Textile Waste Generated at Lithuanian Enterprises. International Journal of Clothing Science and Technology 2017; 29(4): 491-503. DOI: 10.1108/IJCST-08-2016-0097.
  • 3. Koszewska M. Circular Economy – Challenges for the Textile and Clothing Industry. AUTEX Research Journal 2018; 18(4): 333-347. DOI: 10.1515/aut2018-0023.
  • 4. Gupta C, Vaid N, Jain A. Recycling PreConsumer Textile Waste Using Water Soluble Film Technology for Promoting Environmental Sustainability. International Journal of Science and Research 2016; 5(11): 1001-1006.
  • 5. Yuk-lan L. Reusing Pre-Consumer Textile Waste. Springerplus 2015; 4(2): 9 DOI: 10.1186/2193-1801-4-S2-O9.
  • 6. Jordeva S, Tomovska E, Trajković D, Zafirova K. Current State of Pre-Consumer Apparel Waste Management in Macedonia. FIBRES & TEXTILES in Eastern Europe 2015; 23, 1(109): 13-16.
  • 7. Lewis T. Apparel Disposal And Reuse. In: Blackburn R, editor. Sustainable Apparel – Production, Processing and Recycling. Cambridge: Woodhead Publishing, 2015.
  • 8. Dobilaitė V, Jucienė M, Sacevičienė V. Study of Textile Waste Generation and Treatment in Lithuania. FIBRES & TEXTILES in Eastern Europe 2017; 25, 6(126): 8-13. DOI: 10.5604/01.3001.0010.5360
  • 9. Larney M,AardtAM. CaseStudy:Apparel Industry Waste Management: A Focus on Recycling in South Africa. Waste Management & Research 2010; 28, 1: 36-43. DOI: 10.1177/0734242X09338729.
  • 10. Altun Ş. Prediction of Textile Waste Profile and Recycling Opportunities in Turkey. FIBRES & TEXTILES in Eastern Europe 2012; 20, 5(94): 16-20.
  • 11. Mishra R, Behera BK, Militky J. 3D Woven Green Composites from Textile Waste: Mechanical Performance. The Journal of the Textile Institute 2014; 105(4): 460-466. DOI:10.1080/00405000.2013. 820865.
  • 12. Sadikoglu TG, Shikim C, Guleryuz CG, Eryurek B. Usage of Polyester Textile Wastes in Composites. Journal of Scientific and Industrial Research 2003; 62(5). 462-467.
  • 13. Sakthivel S, Ramachandran T, Archana G, Ezhilanban J, Sivajith Kumar VMS. Sustainable Non Woven Fabric Composites for Automotive Textiles Using Reclaimed Fibre. International Journal of Engineering Research and Development 2012; 4(7): 11-13.
  • 14. Ucar M, Wang Y. Utilization of Recycled Post Consumer Carpet Waste Fibers as Reinforcement in Lightweight Cementitious Composites. International Journal of Clothing Science and Technology 2011; 23(4): 242-248.
  • 15. Wang Y, Zhang Y, Polk MB, Kumar S, Muzzy JD. Recycling of Carpet and Textile Fibers. In: Andrady AL, editor. Plastics and the Environment. John Wiley & Sons, 2003; p. 697-725.
  • 16. Yalcin I, Sadikoglu TG, Berkalp OB, Bakkal M. Utilization of Various Non-Woven Waste Forms as Reinforcement in Polymeric Composites. Textile Research Journal 2013; 83(15): 1551-1562. DOI:10.1177/0040517512474366
  • 17. Vilumsone-Nemes I. Industrial Cutting of Textile Materials. Cambridge: Woodhead Publishing: 2012.
  • 18. Vilumsone-Nemes I. Industrial Cutting of Textile Materials. 2nd ed. Cambridge: Elsevier; 2018.
  • 19. Vilumsone-Nemes I. Fabric Spreading and Cutting. In: Nayak R, Padhye R, editors. Garment Manufacturing Technology. Cambridge: Elsevier; 2015. p. 221-245.
  • 20. Vilumsone-Nemes I. Automation in Spreading and Cutting. In: Nayak R, Padhye R, editors. Automation in Garment Manufacturing Cambridge: Elsevier; 2017. p. 139-164.
  • 21. Nemeša I. Automated Knife Cutting Systems to Process Textiles. Tekstilna Industrija 2017; 65(4): 24-31. DOI:10.5937/tekstind1902045N.
  • 22. Nemeša I. Automated Single-Ply Cutting of Textile Materials. Tekstilna Industrija 2018; 66(2): 23-28.
  • 23. Vilumsone-Nemes I. Automated Single-Ply Processing of Styles From Intricate Pattern Fabrics. In: Vilumsone-Nemes I, editor. Industrial Cutting of Textile Materials, 2nd ed. Cambridge: Elsevier; 2018. p. 255-265.
  • 24. Bilgic H, Duru Baykal P. The Effect of Width of the Fabric, Fabric and Model Type on the Efficiency of Marker Plan in Terms of Apparel. Tekstil ve Konfeksiyon 2016; 26(3): 314-320. DOI: 10.1088/1757-899X/254/17/172002.
  • 25. Wong WK, Chan C K, Ip W H. Optimization of Spreading and Cutting Sequencing Model in Garment Manufacturing. Computer Industry 2000; 43(1): 1-10. DOI: 10.1016/S0166-3615(00)00057-9.
  • 26. Wong W K, Chan C K. An Artificial Intelligence Method for Planning the Clothing Manufacturing Process. Journal of Textile Institute. 2001; 92(2): 168-178. DOI:10.1177/0040517511411968.
  • 27. Kwong C K, Ip W H, Chan C K, Wong WK. Optimization of Manual Fabric Cutting Process in Apparel Manufacturing Using Genetic Algorithms. International Journal of Advanced Manufacturing Technology 2005; 27(1): 152-158. DOI: 10.1007/s00170-004-2161-0.
  • 28. Wong WK, Guo ZX, Leung SYS. Applications of Artificial Intelligence in the Apparel Industry: A Review. Textile Research Journal 2011; 81(18): 1871-1892. DOI: 10.1177/0040517511411968.
  • 29. Wong WK, Guo ZX, Leung SYS. Optimizing Decision Making in the Apparel Supply Chain Using Artificial Intelligence (AI): from Production To Retail. Cambridge: Woodhead Publishing; 2013.
  • 30. Dumishllari E, Guxho G. Influence of Lay Plan Solution in Fabric Efficiency and Consume in Cutting Section. AUTEX Research Journal 2016; 16(4): 222-254. DOI: 10.1515/aut-2015-0055.
  • 31. Azmat H, Naveed T, Zhong Y. Reducing Fabric Wastage through Image Projected Virtual Marker (IPVM). Textile Research Journal 2017; 88(14): 1571-1580. DOI: 10.1177/0040517517703605.
  • 32. Ünal C, Yüksel AD. Cut Order Planning Optimisation in the Apparel Industry. FIBRES & TEXTILES in Eastern Europe 2020; 28, 1(139): 8-13. DOI: 10.5604/01.3001.0013.5851.
  • 33. Vilumsone I, Spulgite M, Purina B, Beikule I. Marker Making for Materials with Striped Patterns. Material Science. Textile and Clothing Technology 2009; 4: 119-125.
  • 34. Vilumsone-Nemes I. Marker Making for Garment Styles from Intricate Pattern Textiles. In: I. Vilumsone-Nemes I, editor. Industrial Cutting of Textile Materials, 2nd ed. Cambridge: Elsevier; 2018. p. 215-240.
  • 35. Vilumsone-Nemes I. Multi-Ply Processing of Styles from Intricate Pattern Textiles. In: I. Vilumsone-Nemes I, editor. Industrial Cutting of Textile Materials, 2nd ed. Cambridge: Elsevier; 2018. p. 241-253.
  • 36. Vilumsone-Nemes I, Belakova D. Reduction of Material Consumption Cutting Garment Styles From Checked Fabrics. Industria Textila 2020; 3, p. 275-281.
  • 37. Vilumsone-Nemes I, Zivkovic T. Automated Cutting Room Management Systems to Reduce Fabric Consumption. Procressings of 5th International Scientific-Professional Symposium Textile Science and Economy, Tehnički fakultet „Mihajlo Pupin” 2014; 234-240, Serbia, Zrenjanin.
  • 38. Vilumsone-Nemes I. Lay Planning and Marker Making in Textile Cutting Operations. In: Vilumsone-Nemes I, editor. Industrial Cutting of Textile Materials, 2nd ed. Cambridge: Elsevier; 2018. p. 13-28.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f475bc8-9f79-4b88-adf2-eff65928b833
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.