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ABSTRACf

Khokhlov - Zabolotskaya - Kuznetsov (KZK) nonlinear parabolic wave equation describes
the acoustic pressure changes in the nonlinear and dissipative medium along the sound
beam. This equation is solving numerically. On the basis of the finite difference method
computer programs have been worked out. These program s allow to eonduet different
numerical investigations. The paper presents a mathematical model of finite amplitude wave
propagation problem. The results of numerical investigations refer to influence of diserete
model parameters on accuracy of numerical calculations are studied.

INTRODUCTION

The finite amplitude wave propagation
problem is described basing on continuity,
motion and state equations. The wave
distortion is observed along its propagation
path. It means that the harmonie wave shape
changes step by step during wave propagation.
It is impossible to use linear equations to
deseribe this phenomenon. The system of
above mentioned equations is converted to a
nonlinear partial differential equation called
the nonlinear equation of acoustics [4]. This
equation has not exact analytical solution till
nowoMoreover it has rather complicated form.
Therefore the equations which have easier
form are used to solve the finite amplitude
wave propagation problem in practice. Using
the quasi-optical assumption the nonlinear
equation of acoustic is converted to the KZK
equation. It describes the changes in acoustic
pressure along the sound beam. This equation
alIows to include nonlinearity, dissipation of
medium and sound beam diffraction. Similarly

as the nonlincar equation of acoustics, the
K.ZK equation has not exact solution. There
are known only asymptotic solutions of it. So
there is necessary to solve this equation
approximately. The analytie, half-analytic
methods and numerical one are used to solve
the KZK equation. The method of successive
approximations (3] to find the KZK equation
solution can be used when the nonlinear effects
are not very big (Re. < 1, where Re, - Reynold's
number). The numerical methods allow to find
the solution of the KZK equation in opposite
situation. The finite difference method is one
of numerical methods which can be used to
solve this equation [1,2].

In this paper som e difficulties connected
with the numerical calculations using the finite
difference method have been presented.

MATHEMATICAL MODEL

We assume that the circular piston with a
fixed radius a is the finite amplitude wave
source. Figure 1 shows this source and a
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coordinate system. The wave source is pIaced (a)
in pIane yOz and the wave is propagated in the
x direction.

z

Fig.l The wave source and a coordinate system

The mathematicaI model is built on basis of
the KZK equation

where p'=P-Po is an acoustic pressure, t=t-slc;
- the time in the coordinate system fixed in the
zero phase of the propagating wave, y and z -
axes ortogonal to an axis x, Po - medium
density at rest, Co - speed of sound, b -
dissipation coefficient of the medium, E -

nonlinerity parameter. This equation describes
the changes in acoustic pressure in nonlinear
and dissipative medium along a sound beam.

When the wave source is circuIar and
amplitude of harmonie piston distribution is
onIy function of variabIe r=(f+z2)1!2 it is
comfortably solve this problem as an axial
symmetric.

The solution ofEq. (1) is looked for inside
a cylinderwith radius R (Fig. 2a). The pressure
p' is a function of three coordinates (x, r, T) so
the soIution of the KZK equation is looked for
in a domain D (Fig. 2b)
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Fig.2 (a) Three - dimensional space and (b)
domain D

D={ (x, f, T) E3R3: (2)
xąO,X], fąO,H], TąO, T]}

To complete the problem the boundary
conditions are added

(3)

p; (O, r , T) : - p ( r) sin (w T) , f $:l (4)
P (O, f, T) -O, f >a

where w =271"f,f - fundamental wave frequency.
First of this conditions is connected with axial-



symmetry and the second one deseribes the
fundamental wave distribution on the source.
Additionally it is assumed that
1. p'(x,r,r)=O for rc-R
2. p' is a periodic funetion of the coordinate T.

NUMERICAL SOLUTION

The finite amplitude wave propagation
problem is solved in fixed region and fixed
time interval. The pressure changes along the
sound beam are obtained after computer
calculations.

To solve Eq. (1) numerically function
p'(x.r.r) is diseretized in both space and time.
The reetangular net is construeted in the
domain D. Now let n designate the nth step in
the x direetion, k the kth step in the r direction
and m the mth step time. So the net is defined
in following form

xn=nilx, T k=kD.r, Tm=mAT
X R T (5)ilx=- D.r=- ll.T=-
N' N' Nx r .,.

where n=O, 1•...•N, - 1. k=O, 1•...•Nr - 1. m=I,
2,...•N.,..For fixed values of physical parameters
(statie pressure, density, speed of sound,
nonlinear parameter, dissipation coefficient)
the ealculation's accuracy depends on step
sizes. This accuracy depends on the value of
cylinder radius R, too. It should be so large
that the space can be considered as a half-
infinite one. Moreover similar results are
obtained for different types of pressure
distribution on the source and different values
of physical parameters.

The waveform ehange is equivalent with
spectrum ehange. The harmonie analysis isvery
often used to investigate wave distortion. To
find spectrum of the time waveform obtained
during numerical calculations the fast Fourier
trans form (PFf) is used.

If the wave distortion is not very large the
first and second harmonie amplitude changes
can be observed using the method of successive
approximations. Assuming that funetion P in
formula (4) is a polynomial defined by

the first harmonie amplitude evaluation as a
funetion of range is defined in following form

Ipt(z)I=Po{[1+32z2(cos (-41 -1)]2+
z (7)

+[8z-32z2sin ~]2)1/2
4z

where z=x/Zka" • k - wave number [1].
Similar analytical formulas are known for

another kinds of prim ary wave distributions on
the source, espeeially when the first of
conditions in the formula (4) is defined in
following form (1,3]

p' (O, T, T) =-pc?in (WT) (8)

NUMERICAL INVESTIGATIONS

The numerical investigations were referred
to influence of the discrete model parameters
on ealculation accuracy. This calculations were
carried out using owns computer programs.

Figure 3 shows the first harmonie amplitude
evaluation as a function of range on beam axis
for R equal 2a and 4a respeetively. During
calculations it was assumed that the
fundamental wave frequency was equal f= 1
MHz and its distribution was defined by
formula (6) with pressure Po=lO kPa. The
dissipation coefficient of the medium b=O,
nonlinearity parameter e=3.5. The dashed line
was theoretically calculated using formula (7)
and the solid one presents numerically
calculated first harmonie amplitude ehanges.
The source radius in this situation is equal
a=2.5 cm. This figure shows calculating errors
for distance larger than x=0.7 m when radius
R=2a and too smali changes of the first
harmonie amplitude for distances near source.
The differences observed for large distances
are conneeted with the source beam diffraetion
and the second kind of numerieal errors is
conneeted with ehoose of time and space step
sizes.
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Fig.3 The first harmonie amplitude evaluation as a funetion of range on the beam axis (Po=10
kPa) ealculated numerically (solid line) and theore tically (dashed line)

Figures 4 and 5 shows the influence of value
of radius R on the waveform. First of this
figures demonstrates the wave shape as a
funetion of time in fixed distances of source
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Fig.4 The waveform as a funetion of time
on the beam axis for fixed distances of source
(Po=10 kPa): 1 - x=l m, 2 - x=1.3 ID
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calculated using the same values of all physical
parameters as previously and the second one
presents similar results when pressure Pe = 150
kPa.
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Fig.5 The waveform as a function of time
on the beam axis for fixed distances of source
(Po=150 kPa): 1 - x=l m, 2 - x=1.3 m
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Fig. 6 The first harmonie amplitude evaluation
as a function of range on the beam axis for
different step sizes ~

The results of numerical investigations of
the space step sizes ax and Ar influence on
calculation accuracy are presented in Figs. 6
and 7 respeetively.

Figure 6 shows the first harmonie amplitude
evaluation as a function of range on the beam
axis for different step sizes ~. In this situation
it was assumed that the fundamental wave
distribution on the source was defined by
formuła (8) with frequency f=1 MHz and
amplitude Po=lS0 kPa.

The first harmonie amplitude evaluation as
a funetion of range on the beam axis is
presented in Fig.7. Calculations were made for
different step sizes Ar. During these
ealculations was assumed that the distribution
on the source was defined by (8) with
fundamental wave frequency f=600 kHz. The
step size ~=3.9· lO-s m. The values of the
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Fig. 7 The first harmonie amplitude evaluation
as a function of range on the beam axis for
different step sizes Ar

other parameters and conditions are similar as
earlier, except source radius a. Now it is equal
2.5 cm (Fig. 6 presents results for a=2.3 cm).

The acoustie pressure changes near source
are very fast. Both space steps ~ and Ar have
influence on accuracy of ealculations. The step
size ~ has influence on numerically ea!culated
value of harmonie amplitude maxima and step
size ~r has influence where these maxima are
situated. Lowering of step sizes make that the
accuracy of numerical ealculations increases. It
means that the reality is better modeled then.

Another one effeet of numerical calculations
can be observed in presented figures. There are
too small changes of first harmonie amplitude
in distance near source in comparison with
re ality. It is consequence of quasi-optieal
assumption whieh is used to obtain the KZK
equation. The quasi-optieal approximation
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holds good for distances greater than ACKNOWLEDGMENT
x,,=O.5a(ka)l/3 [3].

CONCLUSIONS

The influence of numerical parameters
solving numerieally the KZK equation has been
presented. The problem was ealculated using
finite difference method.

The solution of the KZK equation is looked
for inside cylinder with fixed radius R. The
calculation accuracy depends on its value. The
sound beam diffraetion causes that the radius
R mus t be suitably big for investigated
distanees. Accuracy of numerical calculations
depends on the step sizes (5), too. It should be
noted that the parabolic approximation holds
good for distances from the source greater
than fixed one.
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