PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Leather Tannery Wastewater Treatment Using Electro-Fenton Process – Effects on Ammonia, Chromium, Total Suspended Solid, Biological Oxygen Demand and Chemical Oxygen Demand Removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electro-Fenton process could remove pollutant in in tannery industry wastewater. The objectives of this is used to know the effect of electro-Fenton on, ammonia (NH3), chromium (III) (Cr(III), total suspended solid (TSS), biological oxygen demand (BOD), and chemical oxygen demand (COD) removal in tannery wastewater treatment. The voltage variation used to trigger the electro-Fenton reaction was 6 V, 8 V, and 10 V. Observation time at 0, 30, 60, 90, and 120 mins was used to see changes in the sample. The results obtained are electro-Fenton method has an effective time of 30 mins to removal efficiency of 60.7%, 32.9%, 72.8%, 53.4%, and 53.4% for NH3, Cr(III), TSS, BOD, and COD respectively. Pollution from tannery effluent can be eliminated to a sufficient extent using the electro-Fenton technique.
Rocznik
Strony
331--338
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Department of Building Engineering Education, Universitas Negeri Medan, Medan, 20221, Indonesia
  • Department of Environmental Engineering, Universitas Brawijaya, Malang, 65145, Indonesia
  • Department of Environmental Engineering, Universitas Brawijaya, Malang, 65145, Indonesia
  • Department of Environmental Engineering, Universitas Brawijaya, Malang, 65145, Indonesia
  • Department of Building Engineering Education, Universitas Negeri Medan, Medan, 20221, Indonesia
  • Department of Environmental Engineering, Institut Teknologi Sumatera, Lampung Selatan, 35365, Indonesia
autor
  • Department of Environmental Engineering, Institut Teknologi Sumatera, Lampung Selatan, 35365, Indonesia
  • Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung, 40135, Indonesia
  • Department of Environmental Engineering, Universitas Pertamina, Jakarta, 12220, Indonesia
  • Department of Rubber and Plastic Processing Technology, Politeknik ATK Yogyakarta, Yogyakarta, 55188, Indonesia
Bibliografia
  • 1. Ramya K.R., Sathish M., Madhan B., Jaisankar S.N., Saravanan P., 2022. Effective utilization of tannery hair waste to develop a high-performing re-tanning agent for cleaner leather manufacturing, J. Environ. Manage. 302, 114029. https://doi.org/10.1016/J.JENVMAN.2021.114029
  • 2. Lei C., Wang H., Zeng Y., Shi B., 2023. A cleaner leather chemical from feather waste for reducing ammonia-nitrogen pollution and improving biological treatment efficiency of tannery wastewater, J. Environ. Manage. 342, 118311. https://doi.org/10.1016/J.JENVMAN.2023.118311
  • 3. Hao D., Wang X., Liang S., Yue O., Liu X., Hao D., Dang X., 2023. Sustainable leather making — An amphoteric organic chrome-free tanning agents based on recycling waste leather, Sci. Total Environ. 867 161531. https://doi.org/10.1016/J.SCITOTENV.2023.161531
  • 4. Krein D.D.C., Piccin J.S., Dettmer A., 2024. Gelatin extracted from chromium (III) tanned leather waste for the synthesis of controlled release hydrogel, J. Environ. Chem. Eng. 12, 112032. https://doi.org/10.1016/J.JECE.2024.112032
  • 5. Fatema-Tuj-Zohra, Swarna M.A., Mobin E., 2024. Performance evaluation of facile synthesized CA-PVA-GO composite for the mitigation of Cr(Ⅲ) and C.I. acid violet 54 dye from tannery wastewater, Sustain. Chem. Environ. 6 100092. https://doi.org/10.1016/J.SCENV.2024.100092
  • 6. Chagtmi R., Ben Hassen Trabelsi A., Ben Abdallah A., Maaoui A., Lopez G., Cortazar M., Khedira H., Chaden C., Olazar M., 2023. Valorization potential of dried tannery fleshing wastes (TFW) through pyrolysis in the leather industry: Kinetic and thermodynamic investigations, Sustain. Chem. Pharm. 33, 101130. https://doi.org/10.1016/J.SCP.2023.101130
  • 7. Sugiarti R., Margana, Muthmainah, Fauzia L.R., 2019. Leather craft industry and tourism: a symbiotic relationship? (A Case Study of Magetan East Java Indonesia), Harmon. J. Arts Res. Educ. 19 141–151. https://doi.org/10.15294/harmonia.v19i2.21124
  • 8. Purwanto H., 2021. The potential of internationalization of small and medium micro enterprises in SAWO leather crafts, Magetan District, East Java, Indonesia, Int. J. Sci. Technol. Manag. 2, 650–659. https://doi.org/10.46729/IJSTM.V2I3.222
  • 9. Oladoye P.O., Ajiboye T.O., Wanyonyi W.C., Omotola E.O., Oladipo M.E., 2023. Ozonation, electrochemical, and biological methods for the remediation of malachite green dye wastewaters: A mini review, Sustain. Chem. Environ. 3, 100033. https://doi.org/10.1016/J.SCENV.2023.100033
  • 10. Asaithambi P., Yesuf M.B., Govindarajan R., Selvakumar P., Niju S., Pandiyarajan T., Kadier A., Nguyen D.D., Alemayehu E., 2023. Industrial wastewater treatment using batch recirculation electrocoagulation (BRE) process: Studies on operating parameters, Sustain. Chem. Environ. 2, 100014. https://doi.org/10.1016/J.SCENV.2023.100014
  • 11. Raj R., Tripathi A., Das S., Ghangrekar M.M., 2024. Is waste-derived catalyst mediated electro-Fenton a sustainable option for mitigating emerging contaminants from wastewater?, Curr. Opin. Environ. Sci. Heal. 37, 100523. https://doi.org/10.1016/J.COESH.2023.100523
  • 12. Cao J., Wang P., Zhu J., Jiang X., Xia J., Liu J., Fang Y., Cai J., 2024. An electrochemical strategy for dredged sediment resource utilization: Phosphorus forms transformation by a neutral pH electro-Fenton system, J. Clean. Prod. 434, 139948. https://doi.org/10.1016/J.JCLEPRO.2023.139948
  • 13. Rai D., Sinha S., 2023. Impact of different anode materials on electro-Fenton process and tannery wastewater treatment using sequential electro-Fenton and electrocoagulation, Chemosphere. 336 139225. https://doi.org/10.1016/J.CHEMOSPHERE.2023.139225
  • 14. Wang S., Hu J., He S., Wang J., 2022. Removal of ammonia and phenol from saline chemical wastewater by ionizing radiation: Performance, mechanism and toxicity, J. Hazard. Mater. 433, 128727. https://doi.org/10.1016/J.JHAZMAT.2022.128727
  • 15. Samajdar S., Golda S. A., Lakhera S.K., Ghosh S., 2024. Recent progress in chromium removal from wastewater using covalent organic frameworks – A review, Chemosphere. 350, 141028. https://doi.org/10.1016/J.CHEMOSPHERE.2023.141028
  • 16. Yang M. 2024. Performance and mechanism of Cr(-VI) removal by sludge-based biochar loaded with zero-valent iron, Desalin. Water Treat. 317, 100035. https://doi.org/10.1016/J.DWT.2024.100035
  • 17. Cui B., Fu S., Hao X., Zhou D., 2023. Synergistic effects of simultaneous coupling ozonation and biodegradation for coking wastewater treatment: Advances in COD removal, toxic elimination, and microbial regulation, Chemosphere. 318, 137956. https://doi.org/10.1016/J.CHEMOSPHERE.2023.137956
  • 18. Lin Z., Cheng S., Sun Y., Li H., Jin B., 2022. Realizing BOD detection of real wastewater by considering the bioelectrochemical degradability of organic pollutants in a bioelectrochemical system, Chem. Eng. J. 444, 136520. https://doi.org/10.1016/J.CEJ.2022.136520
  • 19. Natsir M.F., Selomo M., Ainkhaer, 2020. The effectiveness of drum of wastewater treatment (DOWT) in reducing TSS of domestic wastewater, Enfermería Clínica. 30, 175–177. https://doi.org/10.1016/J.ENFCLI.2019.10.063
  • 20. APHA, 1998. Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C.
  • 21. Preethi V., Parama Kalyani K.S., Iyappan K., Srinivasakannan C., Balasubramaniam N., Vedaraman N., 2009. Ozonation of tannery effluent for removal of cod and color, J. Hazard. Mater. 166, 150–154. https://doi.org/10.1016/J.JHAZMAT.2008.11.035
  • 22. Karthikeyan S., Boopathy R., Sekaran G., 2015. In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater, J. Colloid Interface Sci. 448, 163–174. https://doi.org/10.1016/J.JCIS.2015.01.066
  • 23. Kumar E.T.D., Thirumalai K., Balachandran S., Aravindhan R., Swaminathan M., Rao R.J., 2017. Solar light driven degradation of post tanning water at heterostructured BiVO4-ZnO mixed oxide catalyst interface, Surfaces and Interfaces. 8, 147–153. https://doi.org/10.1016/J.SURFIN.2017.05.009
  • 24. Nidheesh P.V., Olvera-Vargas H., Oturan N., Oturan M.A., 2018. Heterogeneous electro-Fenton process: Principles and applications, Handb. Environ. Chem. 61, 85–110. https://doi.org/10.1007/698_2017_72/COVER
  • 25. Chen Q., Zhou K., Chen Y., Wang A., Liu F., 2017. Removal of ammonia from aqueous solutions by ligand exchange onto a Cu(II)-loaded chelating resin: kinetics, equilibrium and thermodynamics, RSC Adv. 7, 12812–12823. https://doi.org/10.1039/C6RA28287C
  • 26. Cerar J., 2015. Reaction between Chromium(III) and EDTA Ions: an Overlooked Mechanism of Case Study Reaction of Chemical Kinetics, Acta Chim. Slov. 62, 538–545. https://doi.org/10.17344/ACSI.2015.1492
  • 27. Zhang H., Zhang D., Zhou J., 2006. Removal of COD from landfill leachate by electro-Fenton method, J. Hazard. Mater. 135, 106–111. https://doi.org/10.1016/J.JHAZMAT.2005.11.025
  • 28. Basha C.A., Soloman P.A., Velan M., Balasubramanian N., Kareem L.R., 2009. Participation of Electrochemical Steps in Treating Tannery Wastewater, Ind. Eng. Chem. Res. 48, 9786–9796. https://doi.org/10.1021/IE900464S
  • 29. Oukili K., Loukili M., 2019. Electrochemical oxidation treatment of leather dyeing wastewater using response surface methodology, Desalin. Water Treat. 167, 302–312. https://doi.org/10.5004/dwt.2019.24561
  • 30. Mook W.T., Chakrabarti M.H., Aroua M.K., Khan G.M.A., Ali B.S., Islam M.S., Abu Hassan M.A., 2012. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review, Desalination. 285, 1–13. https://doi.org/10.1016/J.DESAL.2011.09.029
  • 31. Lofrano G., Meric S., Inglese M., Nikolau A., Belgiorno V., 2010. Fenton oxidation treatment of tannery wastewater and tanning agents: synthetic tannin and nonylphenol ethoxylate based degreasing agent, Desalin. Water Treat. 23, 173–180. https://doi.org/10.5004/DWT.2010.1991
  • 32. Hasegawa M.C., Daniel J.F.D.S., Takashima K., Batista G.A., Da Silva S.M.C.P., 2014. COD removal and toxicity decrease from tannery wastewater by zinc oxide-assisted photocatalysis: a case study, Environ. Technol. 35, 1589–1595. https://doi.org/10.1080/09593330.2013.874499
  • 33. Deva Kumar E.T., Ramalingam S., Thirumalai K., Aravindhan R., Swaminathanb M., Raghava Rao J., 2018. Natural sunlight assisted Bentonite-ZnO mixed oxide catalyst for organic pollutant removal in leather post tanning wastewater with solar reactor, J. Am. Leather Chem. Assoc. 113(8), 341–347. https://dialnet.unirioja.es/servlet/articulo?codigo=6951009 (accessed February 12, 2024).
  • 34. Xu P., Huang S., Liu M., Lv Y., Wang Z., Long J., Zhang W., Fan H., 2019. Z-Schemed WO3/rGO/SnIn4S8 sandwich nanohybrids for efficient visible light photocatalytic water purification, Catal. 9, 187. https://doi.org/10.3390/CATAL9020187
  • 35. Paschoal F.M.M., Anderson M.A., Zanoni M.V.B., 2009. Simultaneous removal of chromium and leather dye from simulated tannery effluent by photoelectrochemistry, J. Hazard. Mater. 166, 531–537. https://doi.org/10.1016/J.JHAZMAT.2008.11.058
  • 36. Esfandian H., Rostamnejad Cherati M., Khatirian M., 2024. Electrochemical behavior and photocatalytic performance of chlorpyrifos pesticide decontamination using Ni-doped ZnO-TiO2 nanocomposite, Inorg. Chem. Commun. 159, 111750. https://doi.org/10.1016/J.INOCHE.2023.111750
  • 37. Tanji K., El Mrabet I., Fahoul Y., Jellal I., Benjelloun M., Belghiti M., El Hajam M., Naciri Y., El Gaidoumi A., El Bali B., Zaitan H., Kherbeche A., 2023. Epigrammatic progress on the photocatalytic properties of ZnO and TiO2 based hydroxyapatite@photocatlyst toward organic molecules photodegradation: A review, J. Water Process Eng. 53, 103682. https://doi.org/10.1016/J.JWPE.2023.103682
  • 38. Kirk, A. 1981. Chromium (III) photochemistry and photophysics. Coordination Chemistry Reviews, 39(1–2), 225–263.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f3d84ee-1744-470c-9a9b-a2b9be37c903
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.