PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting the microstructure of compacted graphite iron using a fuzzy knowledge‑based system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the important engineering materials is compacted graphite iron (CGI). Obtaining an expected microstructure leading to desired material properties is relatively difficult. In this paper, we present an approach to predicting the microstructure with a fuzzy knowledge-based system. On the basis of the results of statistical analysis and expert knowledge, an original taxonomy of CGI casts was formulated. The procedure of data acquisition, specimen preparation, analysis procedure and microstructures obtained are presented. Methods for expert experience-supported knowledge extraction from experimental data, as well as methods for formalizing knowledge as fuzzy rules, are introduced. The proposed rulesets, the reasoning process, and exemplary results are provided. The verification results showed that, using our approach, it is possible to effectively predict the microstructure and properties of CGI casts even in the absence of sufficient data to use data-driven knowledge acquisition. On the basis of the results obtained, examples of possible applications of the developed approach are presented.
Rocznik
Strony
art. no. e87, 2023
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90‑537 Lodz, Poland
  • Department of Applied Computer Science, AGH-University of Science and Technology, Gramatyka 10, 30‑067 Krakow, Poland
  • Department of Applied Computer Science and Modelling, AGH-University of Science and Technology, Czarnowiejska 66, 30‑059 Krakow, Poland
Bibliografia
  • 1. Ahmed S, El-Abbasy MS, Tarek Z. Fuzzy-based model for predicting failure of oil pipelines. J Infrastruct Syst. 2014;20:4014018.
  • 2. Alam A, Muqeem M, Ahmad S. Comprehensive review on clustering techniques and its application on high dimensional data. Int J Comput Sci Netw Secur. 2021;21:237.
  • 3. Begenova, SB Avdeenko TV and IOP. Building of fuzzy decision trees using ID3 algorithm. In Int. Conf. Inf. Technol. Bus. Ind. 2018, PTS 1-4 1015 (2018).
  • 4. Cintra M, Monard M-C, Camargo H. A fuzzy decision tree algorithm based on C4.5. Mathware Soft Comput. 2013;2013:56.
  • 5. Dubois D, Prade H. Fuzzy sets in approximate reasoning, part 1: Inference with possibility distributions. Fuzzy Sets Syst. 1999;100:256.
  • 6. Ferry M, Xu W. Microstructural and crystallographic features of ausferrite in as-cast gray iron. Mater Charact. 2004;53:43.
  • 7. Ghasemi R, Hassan I, Ghorbani A, Dioszegi A. Austempered compacted graphite iron-influence of austempering temperature and time on microstructural and mechanical properties. Mater Sci Eng A. 2019;767:138434.
  • 8. Holm EA, Cohn R, Gao N, Kitahara AR, Matson TP, Lei B, Yarasi SR. Overview: computer vision and machine learning for microstructural characterization and analysis. Metall Mater Trans A. 2020;51:5985.
  • 9. Konig M, Wessen M. The influence of copper on microstructure and mechanical properties of compacted graphite iron. Int J Cast Metals Res. 2013;22:164. https://doi.org/10.1179/136404609X367597.
  • 10. Lyu Y. Abrasive wear of compacted graphite cast iron with added tin. Metallogr Microstruct Anal. 2019;8:67.
  • 11. Lyu Y, Sun Y, Liu S, Zhao J. Effect of tin on microstructure and mechanical properties of compacted graphite iron. Int J Cast Metals Res. 2015;28:263. https://doi.org/10.1179/1743133615Y.0000000009.
  • 12. Macioł A, Macioł P. The use of Fuzzy rule-based systems in the design process of the metallic products on example of microstructure evolution prediction. J Intell Manuf. 2022;33:1991.
  • 13. Maciol A, Maciol P, Mrzyglod B. Prediction of forging dies wear with the modified Takagi-Sugeno fuzzy identification method. Mater Manuf Process. 2020;35:700.
  • 14. Madeti SR, Singh SN. Modeling of PV system based on experimental data for fault detection using kNN method. Sol Energy. 2018;173:139.
  • 15. Mamdani EH, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud. 1975;7:13.
  • 16. Metzloff KE, Loper CR, Society AF. Effect of the nodule-matrix interface on the stress/strain relationship and damping in ductile and compacted graphite irons. Trans Am Foundry Soc. 2002;109:256.
  • 17. Mrzygłod B, Gumienny G, Wilk-Kołodziejczyk D, Regulski K. Application of selected artificial intelligence methods in a system predicting the microstructure of compacted graphite iron. J Mater Eng Perform. 2019;28:3894-904.
  • 18. Muller M, Britz D, Staudt T, Mucklich F. Microstructural classification of bainitic subclasses in low-carbon multi-phase steels using machine learning techniques. Metals (Basel). 2021;11:1836.
  • 19. Murtagh F, Legendre P. Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? JClassif. 2014;31:274.
  • 20. Nasiri S, Khosravani MR, Weinberg K. Fracture mechanics and mechanical fault detection by artificial intelligence methods: a review. Eng Fail Anal. 2017;81:270.
  • 21. Pedregosa F, Weiss R, Brucher M, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825.
  • 22. Popov PI, Sizov IG. Effect of alloying elements on the structure and properties of iron with vermicular graphite. Met Sci Heat Treat. 2006;48:272.
  • 23. Pytel A, Gazda A. Ocena wybranych właściwości żeliwa z grafitem wermikularnym hartowanego z przemianą izotermiczną (AVCI). In: Pr. Inst. Odlew. T. 54, nr, Sieć Badawcza Łukasiewicz-Instytut Odlewnictwa, p 23 (2014).
  • 24. Ramadan M, Nofal AA, Elmahalawi I, Abdel-Karim R. Comparison of austempering transformation in spheroidal graphite and compacted graphite cast iron. Int J Cast Metals Res. 2013;19:151. https://doi.org/10.1179/136404606225023363.
  • 25. Regulski K, Jakubski J, Opaliński A, Brzeziński M, Głowacki M. The prediction of moulding sand moisture content based on the knowledge acquired by data mining techniques. Arch Metall Mater. 2016;61:1363.
  • 26. Regulski K, Rojek G, Wilk-Kołodziejczyk D, Gumienny G, Kacprzyk B, Mrzygłod B. Approximation of ausferrite content in the compacted graphite iron with the use of combined techniques of data mining. Arch Foundry Eng. 2017. https://doi.org/10.1515/afe-2017-010217.
  • 27. Ribeiro B, Rocha F, Andrade B, Lopes W, Correa E. Influence of different concentrations of silicon, copper and tin in the microstructure and in the mechanical properties of compacted graphite iron. Mater Res. 2020;23:2.
  • 28. Salem F, Awadallah MA. Parameters estimation of photovoltaic modules: comparison of ANN and ANFIS. Int J Ind Electron Drives. 2014;1:121.
  • 29. Savas SK, Nasibov E. A fuzzy ID3 induction for linguistic data sets. Int J Intell Syst. 2018;33:858.
  • 30. Wilk-Kolodziejczyk D, Regulski K, Gumienny G. Comparative analysis of the properties of the nodular cast iron with carbides and the austempered ductile iron with use of the machine learning and the support vector machine. Int J Adv Manuf Technol. 2016;87:1077.
  • 31. Wilk-Kolodziejczyk D, Regulski K, Gumienny G, Kacprzyk B, Kluska-Nawarecka S, Jaskowiec K. Data mining tools in identifying the components of the microstructure of compacted graphite iron based on the content of alloying elements. Int J Adv Manuf Technol. 2018;95:3127.
  • 32. Wollmann D, Pintaude G, Ghasemi R. Effect of austempering treatment on lubricated sliding contact of compacted graphite iron. SN Appl Sci. 2020;2:1947.
  • 33. Xu W, Ferry M, Wang Y. Influence of alloying elements on ascast microstructure and strength of gray iron. Mater Sci Eng A. 2005;390:326.
  • 34. Zhu J, Liu Q, Jiang A, Lian X, Fang D, Dong H. Effects of Cu on the morphology and growth mode of graphite in compacted graphite iron. Trans Indian Inst Met. 2021;74:1529.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f39a9d6-815b-4e2e-bbf8-7dbb693967fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.