Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Wpływ szczeliny powietrznej na właściwości podwójnie ekranowanego układu opóźniającego
Języki publikacji
Abstrakty
A double-shielded microstrip (DSM) device is made of conventional microstrip device and by mounting additional shielded dielectric plate on top of it. The resulting structure is similar to the strip line, but there is a significant difference – a thin air gap that is equal to the thickness of the microstrip. The thickness of this air gap can become uncontrollable in the device manufacture process. In this paper the influence of thin air gap on the electrical parameters of DSM devices such as: microstrip line, coupled lines, multiconductor line, and meander delay line is investigated.
W podwójnie ekranowanym mikropasku (DSM) układu opóźniającego DDs dodano dodatkową warstwę dielektryczną. Cienka szczelina powietrzna ma grubość paska. Ta szczelina może być trudna do kontrolowania w procesie produkcji. W artykule analizowano wpływ szczeliny powietrznej na parametry układu DSM.
Wydawca
Czasopismo
Rocznik
Tom
Strony
275--279
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
- Department of Electronic Systems, Faculty of Electronics, Vilnius Gediminas Technical University, Naugarduko str. 41-425, LT – 03227, Vilnius, Lithuania
autor
- Department of Electronic Systems, Faculty of Electronics, Vilnius Gediminas Technical University, Naugarduko str. 41-425, LT – 03227, Vilnius, Lithuania
autor
- Department of Electronic Systems, Faculty of Electronics, Vilnius Gediminas Technical University, Naugarduko str. 41-425, LT – 03227, Vilnius, Lithuania
autor
- Department of Electronic Systems, Faculty of Electronics, Vilnius Gediminas Technical University, Naugarduko str. 41-425, LT – 03227, Vilnius, Lithuania
Bibliografia
- [1] Hsu H., Wen J .H., Timing Synchronization in Ultra- Wideband Systems with Delay Line Combination Receivers, Communications Letters, IEEE, 11 (2007), No. 3, 264–266
- [2] Gupta S., et al, CRLH–CRLH C-Section Dispersive Delay Structures with Enhanced Group-Delay Swing for Higher Analog Signal Processing Resolution, IEEE Transactions on MTT, 60 (2012), No. 12, 3939–3949
- [3] Chu T. -S., Hashemi H., True-Time-Delay-Based Multi- Beam Arrays, IEEE Transactions on MTT, 61 (2013), No. 8, 3072–3082
- [4] Kuo Y. -H. ,et al., A Digital-Calibrated Transmitter-to- Receiver Isolator in Radar Applications, IEEE Microwave and Wireless Components Letters, 22 (2012), No. 12, 651–653
- [5] Xu L., Yang Z.-H., Li J.-Q. , Li B., 3-D Finite-Element Eigenvalue Analysis of Slow-Wave Structures of Traveling- Wave Tubes Without Matching Meshes, IEEE Transactions on MTT, 61 (2013), No. 10, 3524–3528
- [6] Daskevicius V. , et al , Simulation and Properties of the Wide-Band Hybrid Slow-Wave System, Electronics and Electrical Engineering, (2010), No. 104(8), 43–46
- [7] Li G., et al , Delay Line Based Analog-to-Digital Converters, IEEE Transactions on Circuits and Systems-II. Express Briefs, (2009), No. 6, 464–468
- [8] Š IMKO M., CHUPAČ M. , The theoretical synthesis and design of symmetrical delay line with surface acoustic wave for oscillators with single-mode regime of oscillation, PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), 88 (2012), No. 12a, 347–350
- [9] Wu C. -T. M., et al, A Dual-Purpose Reconfigurable Negative Group Delay Circuit Based on Distributed Amplifiers, Microwave and Guided Wave Letters, 23 (2013), No. 11, 593–595
- [10] Kim H., et al l., A 0.25-um BiCMOS feed forward equalizer using active delay line for backplane communication, IEEE International Symposium on Circuits and Systems ISCAS 2007, (2007), 193–196
- [11] Staras S., et al, Wide-Band Slow-Wave Systems: Simulation and Applications, CRC Press, pp. 438, 2012
- [12] Katkevičius A. , et al , Calculations of characteristics of microwave devices using artificial neural networks, PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), 88 (2012), No. 1a, 281–285
- [13] Met levskij E., Urbanavicius V., Analysis of charge distribution on rectangular microstrip structures, Acta Physica Polonica A, 119 (2011), No. 4, 503–508
- [14] Lai C. -H., et al., Microwave Three-Channel Selector Using Tri-Mode Synthesized Transmission Lines, IEEE Transactions on MTT, 61 (2013), No. 10, 3529–3540
- [15] Périgaud A ., et al, Synthesis of Vertical Interdigital Filters Using Multilayered Technologies, IEEE Transactions on MTT, 60 (2012), No. 4, 965–974
- [16] Ta H. H., Pham A- . V., Dual Band Band-Pass Filter With Wide Stopband on Multilayer Organic Substrate, IEEE Microwave and Wireless Components Letters, 23 (2013), No. 4, 193–195
- [17] Kaifas T. N., Sahalos J. N. , Multiconductor Transmission Lines in Inhomogeneous Bi-Anisotropic Media, IEEE Transactions on MTT, 56 (2008), No. 3, 638–653
- [18] Plaza G., Marques R., Medina F., Quasi-TM MoL/MoM Approach for Computing the Transmission-Line Parameters of Lossy Lines, Transactions on MTT, 54 (2006), No. 1, 198–209
- [19] Lucido M., A New High-Efficient Spectral-Domain Analysis of Single and Multiple Coupled Microstrip Lines in Planarly Layered Media, IEEE Transactions on MTT, 60 (2012), No. 7, 2025–2034
- [20] Ymeri H., Nauwelaers B., Maex K., Efficient procedure for capacitance matrix calculation of multilayer VLSI interconnects using quasi-static analysis and Fourier series approach, Journal of Telecommunications and Information Technology, (2002), No. 2, 40–45
- [21] Shujing L., Hanqing Z., An Efficient Algorithm for the Parameter Extraction of Multiconductor Transmission Lines in Multilayer Dielectric Media, Digest on Antennas and Propagation Society International Symposium, 2005 IEEE, 3A (2005), No. 3, 228–231
- [22] Srivastava K.V., Awasthi S., Biswas A. , Dispersion and Attenuation Characteristics of Asymmetric Multiconductor Lines in Suspended Substrate Structure Using Full-Wave Modal Analysis, Microwave and Optical Technology Letters, 48 (2006), No. 7, 1305–1310
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f384879-9302-409c-89cf-33e5efc4ae5a