PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Geochemical and acoustic evidence for the occurrence of methane in sediments of the Polish sector of the southern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of geochemical and acoustic investigations of sediments in the Polish sector of the southern Baltic Sea. Its objective was to indicate areas of gas bubble formation and the occurrence of methane. Over 3000 nautical miles of transects were recorded using a variety of hydroacoustic instruments, and five coring points were selected for further analyses of pore waters (CH4, SO4-2, H2S, NH4+, total alkalinity) and sediments (grain size distribution, Corg, Ntot, LOI and WC). Gas turned out to be present at shallow depths in different forms such as recent and buried pockmarks, and gas-saturated sediments (including gas pockets and seepages). It was found that methane was widespread in the sediments of the study area, both in the surface sediments, e.g. in the vicinity of the Hel Peninsula or in the central Gulf of Gdańsk, and in deeper sediment layers, e.g. in the Gdańsk Deep and the Słupsk Furrow. Chemical analysis showed that as a result of the rapid decomposition of organic matter, sulphates were depleted in the top 20 cm layer of sediments and that methane was produced at relatively shallow depths (in some areas even at depths of 20-30 cm bsf) compared to other regions of the Baltic, reaching concentrations of >6 mmol l-1 in the 30-40 cm layer below the sediment surface. The sulphate-methane transition zone (SMTZ) was 4-37 cm thick and was situated in the uppermost 50 cm of the sediments.
Czasopismo
Rocznik
Strony
951--978
Opis fizyczny
Bibliogr. 86 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Oceanography, University of Gdańsk, al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
Bibliografia
  • 1. Abegg F., Anderson A.L., 1997, The acoustic turbid layer in muddy sediments of Eckernförde Bay, Western Baltic: methane concentration, saturation and bubble characteristics, Mar. Geol., 137(1-2), 137-147, http://dx.doi.org/10.1016/S0025-3227(96)00084-9
  • 2. Anderson A.L., Hampton L.D., 1980, Acoustics of gas-bearing sediments I. Background, J. Acoust. Soc. Am., 67(6), 1865-1889, http://dx.doi.org/10.1121/1.384453
  • 3. Andrulewicz E., Witek Z., 2002, Anthropogenic pressure and environmental effects on the Gulf of Gdańsk: recent management efforts, [in:] Baltic coastal ecosystems: central and eastern european studies, G. Schernewski & U. Schiewer (eds.), Springer CEEDES Ser., 119-139.
  • 4. Barnes R.O., Goldberg E.D., 1976, Methane production and consumption in anoxic marine sediments, Geology, 4(5), 297-300, http://dx.doi.org/10.1130/0091-7613(1976)4<297:MPACIA>2.0.CO;2
  • 5. Boetius A., Ravenschlag K., Schubert C.J., Rickert D., Widdel F., Gieseke A., Amann R., Jørgensen B.B., Witte U., Pfannkuche O., 2000, A marine microbial consortium apparently mediating anaerobic oxidation of methane, Nature, 407, 623-626, http://dx.doi.org/10.1038/35036572
  • 6. Bolałek J., Frankowski L., 2003, Selected nutrients and iron in interstitial waters of the estuary of Southern Baltic (Gulf of Gdańsk and the Pome ranian Bay) in relation to redox potential, Water Air Soil Poll., 147(1-4), 39-50.
  • 7. Bolałek J., 2010, Interstitial waters, [in:] Physical, biological and chemical examination of marine sediments, J. Bolałek (ed.), Wyd. Univ. Gdańsk, Gdańsk, 525-551, (in Polish).
  • 8. Brink K.H., Robinson A. R., 2005, Global coastal ocean: regional studies and syntheses, Harvard Univ. Press, 1090 pp.
  • 9. Brodecka A., Bolałek J., 2011, Geochemical factors controlling the occurrence of methane in sediments of the Gulf of Gdańsk, [in:] Interdyscyplinarne zagadnienia w górnictwie i geologii, Ofic. Wyd. PWr., Wrocław, 73-83, (in Polish).
  • 10. Burska D., Frankowski L., Bolałek J., 1999, Temporal variability in the chemicalcomposition of bottom sediments in the Pomeranian Bay (Southern Baltic), Oceanologia, 41(3), 445-459.
  • 11. Bussmann I., Suess E., 1998, Groundwater seepage in Eckernförde Bay (Western Baltic Sea): effect on methane and salinity distribution of the water column, Cont. Shelf Res., 18(14-15), 1795-1806, http://dx.doi.org/10.1016/S0278-4343(98)00058-2
  • 12. Carman R., Jonsson P., 1991, Distribution patterns of different forms of phosphorus in some surficial sediments of the Baltic Sea, Chem. Geol., 90(1-2), 91-106, http://dx.doi.org/10.1016/0009-2541(91)90036-Q
  • 13. Clay C.S., Medwin H., 1977, Acoustical oceanography: principles and applications, John Wiley & Sons, New York, 544 pp.
  • 14. Claypool G.E., Kaplan I.R., 1974, The origin and distribution of methane in marine sediments, [in:] Natural gases in marine sediments, I.R. Kaplan (ed.), Plenum Press, New York, 99-139.
  • 15. Claypool G.E., Kvenvolden K.A., 1983, Methane and other hydrocarbon gases in marine sediment, Ann. Rev. Earth Planet Sci., 11, 299-327, http://dx.doi.org/10.1146/annurev.ea.11.050183.001503
  • 16. Cyberska B., 1990, Salinity of waters in the Gdańsk Basin, [in:] The Gulf of Gdańsk, A. Majewski (ed.), Wyd. Geol., Warszawa, 237-255.
  • 17. Davis A.M., 1992, Shallow gas: an overview, Cont. Shelf Res., 12(10), 1077-1079, http://dx.doi.org/10.1016/0278-4343(92)90069-V
  • 18. Dickens G.R., Koelling M., Smith D.C., Schnieders L., IODP Expedition (302 scientists), 2007, Rhizon sampling of pore waters on scientific drilling expeditions: an example from the IODP Expedition 302, Arctic Coring Expedition (ACEX), Sci. Drill., 4, 22-25, http://dx.doi.org/10.2204/iodp.sd.4.08.2007
  • 19. Engvall A.G., 1978, The fate of nitrogen in early diagenesis of Baltic sediments, Ph.D. thesis, Univ. Stockholm, Stockholm, 16 pp.
  • 20. Fleischer P., Orsi T.H., Richardson M.D., Anderson A.L., 2001, Distribution of free gas in marine sediments: a global overview, Geo-Mar. Lett., 21(2), 103-122, http://dx.doi.org/10.1007/s003670100072
  • 21. Geodekyan A. A., Trotsuik V.Y., 1990, Pockmarks at the Baltic bottom - the indicators of hydrocarbon migration process from the deep layers, [in:] Combined geoacoustic-gasimetric and lithogeochemical in vestigations in the Baltic Sea, A.A. Geodekyan, V.Y. Trotsiuk & A. Blazhchishin (eds.), Inst. Oceanol., RAS, Moscow, 6-11, (in Russian).
  • 22. Graca B., Witek Z., Burska D., Białkowska I., Łukawska-Matuszewska K., Bolałek J., 2006, Pore water phosphate and ammonia below the permanent halocline in the south-eastern Baltic Sea and their benthic fluxes under anoxic conditions, J. Marine Syst., 63(3-4), 141-154, http://dx.doi.org/10.1016/j.jmarsys.2006.06.003
  • 23. Grasshoff K., Ehrhardt M., Kremling K., 1983, Methods of sea water analysis, Verlag Chem., 419 pp.
  • 24. Grasshoff K., Ehrhardt M., Kremling K., 1999, Methods of seawater analysis, Wiley-Vch Verlag Weinheim, 603 pp., http://dx.doi.org/10.1002/9783527613984
  • 25. Hansson M., Andersson L., Axe P., 2011, Areal extent and volume of anoxia and hypoxia in the Baltic Sea, 1960-2011, Rep. Oceanography, 42, 76 pp.
  • 26. Hedges J.I., Stern J.H., 1984, Carbon and nitrogen determinations of carbonate containing solids, Limnol. Oceanogr., 29, 657-663, http://dx.doi.org/10.4319/lo.1984.29.3.0657
  • 27. HELCOM, 1998, The third Baltic Sea pollution load compilation (PLC-3), Balt. Sea Environ. Proc. No. 70, 133 pp.
  • 28. Hermanowicz W., Dojlido D., Zerbe J., Dożanska W., Koziorowski B., 1999, Fizyczno-chemiczne badanie wody i ścieków, Arkady, Warszawa, 555 pp.
  • 29. Hinz K., Kögler F., Richter I., Seibold E., 1971, Reflexions-seismische Unter-suchungen mit einer pneumatischen Schallquelle und einem Sedimentecholot in der westlichen Ostsee. Teil II. Untersuchungsergebnisse und geologische Deutung, Meyniana, 21, 17-21.
  • 30. Hoehler T.M., Alperin M.J., Albert D. B., Martens C.S., 1994, Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium, Global Biogeochem. Cy., 8(4), 451-463, http://dx.doi.org/10.1029/94GB01800
  • 31. Iversen N., Jørgensen B.B., 1985, Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark), Limnol. Oceanogr., 30(5), 944-955, http://dx.doi.org/10.4319/lo.1985.30.5.0944
  • 32. Jankowska H., 1993, The bottom deposits of Puck Bay, Stud. Mat. Oceanogr., 64, 163-171, (in Polish).
  • 33. Jørgensen B.B., Fossing H., Endler R., 2011, Methane content of sediment core 374180-6GC, Bornholm Basin, Baltic Sea, [in:] Chemistry of sediment cores of RV Poseidon cruise PO392, B.B. Jørgensen, H. Fossing & R. Endler (eds.), http://dx.doi.org/10.1594/PANGAEA.762358
  • 34. Jørgensen B.B., Weber A., Zopfi J., 2001, Sulfate reduction and anaerobic oxidation in Black Sea sediments, Deep-Sea Res. Pt. I, 48(9), 2097-2120, http://dx.doi.org/10.1016/S0967-0637(01)00007-3
  • 35. Kiene R.P., 1991, Production and consumption of methane in aquatic systems, [in:] Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes, J.E. Rogers & W. B. Whitman (eds.), Am. Soc. Microbiol., Washington, 298 pp.
  • 36. Klusek Z., Sutin A., Matveev A., Potapov A., 1995, Observation of nonlinear scattering of acoustical waves at sea sediments, Acoust. Lett., 18(11), 198-203.
  • 37. Kramarska R., 1995, Surficial bottom sediments and sediments 1 m below the sea bottom surface, [in:] Geological atlas of the southern Baltic, 1:500 000, E. Mojski, R. Dadlez, B. Słowanska, S. Uścinowicz & J. Zachowicz (eds.), Pol. Geol. Inst., Sopot-Warszawa, 1-63, (in Polish).
  • 38. Laier T., Jensen J.B., 2007, Shallow gas depth-contour map of the Skagerrak-western Baltic Sea region, Geo-Mar. Lett., 27(2-4), 127-141, http://dx.doi.org/10.1007/s00367-007-0066-2
  • 39. Łukawska-Matuszewska K., Bolałek J., 2008, Spatial distribution of phosphorus forms in sediments in the Gulf of Gdańsk (southern Baltic Sea), Cont. Shelf Res., 28(7), 977-990, http://dx.doi.org/10.1016/j.csr.2008.01.009
  • 40. Łysiak-Pastuszak E., Drgas N., 2004, Oxygen and hydrogen sulphide, [in:] Environmental conditions in the Polish zone of the Southern Baltic Sea during 2001, W. Krzyminski, M. Miętus & E. Łysiak-Pastuszak (eds.), Inst. Meteorol. Water Manag., Gdynia, (in Polish).
  • 41. Łysiak-Pastuszak E., Drgas N., Piątkowska Z., 2004, Eutrophication in the Polish coastal zone: the past, present status and future scenarios, Mar. Pollut. Bull., 49(3), 186-195, http://dx.doi.org/10.1016/j.marpolbul.2004.02.007
  • 42. Majewski A. (ed.), 1990, The Gulf of Gdańsk, Wyd. Geol., IMGW, Warszawa, (in Polish).
  • 43. Majewski A., 1994, Natural environmental conditions of the Gulf of Gdańsk and its coastline, [in:] The pollution and renewal of the Gulf of Gdańsk, J. Błażejewski & D. Schuller (eds.), Univ. Gdańsk, Gdynia, 22-35, (in Polish).
  • 44. Majewski P., Klusek Z., 2011, Expressions of shallow gas in the Gdańsk Basin, Zesz. Nauk. Akad. Mar. Woj., 4, 187 pp.
  • 45. Maksymowska D., 1998, Organic matter degradation in the water column and bottom sediments of the Gulf of Gdańsk, Ph.D. thesis, Univ. Gdańsk, Gdynia, 147 pp.
  • 46. Martens C.S., Albert D. B., Alperin M.J., 1998, Biogeochemical processes controlling methane in gassy coastal sediments - Part 1. A model coupling organic matter flux to gas production, oxidation and transport, Cont. Shelf Res., 18(14-15), 1741-1770, http://dx.doi.org/10.1016/S0278-4343(98)00056-9
  • 47. Martens C.S., Albert D.B., Alperin M.J., 1999, Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernförde Bay, German Baltic Sea, Am. J. Sci., 299(7-9), 589-610, http://dx.doi.org/10.1016/S0278-4343(98)00056-9
  • 48. Martens C.S., Berner R.A., 1974, Methane production in the interstitial waters of sulfate-depleted marine sediments, Science, 185(4157), 1167-1169, http://dx.doi.org/10.1126/science.185.4157.1167
  • 49. Martens C.S., Berner R.A., 1977, Interstitial water chemistry of anoxic Long Island Sound sediments, 1. Dissolved gases, Limnol. Oceanogr., 22(1), 10-25, http://dx.doi.org/10.4319/lo.1977.22.1.0010
  • 50. Mathys M., Thießen O., Theilen F., Schmidt M., 2005, Seismic characterisation of gas-rich near surface sediments in the Arkona Basin, Baltic Sea, Mar. Geophys. Res., 26(2-4), 207-224, http://dx.doi.org/10.1007/s11001-005-3719-4
  • 51. Mogollón J.M., Dale A.W., Fossing H., Regnier P., 2012, Timescales for the development of methanogenesis and free gas layers in recently-deposited sediments of Arkona Basin (Baltic Sea), Biogeosciences, 9, 1915-1933, http://dx.doi.org/10.5194/bg-9-1915-2012
  • 52. Mojski J.E., Dadlez R., Słowanska B., Uścinowicz S., Zachow icz J. (eds.), 1995, Geological atlas of the southern Baltic, 1:500000, Pol. Geol. Inst., Sopot-Warszawa, 1-63, (in Polish).
  • 53. Müller P.J., 1977, C/N ratios in Pacific deep-sea sediments: effect of inorganic ammonium and organic nitrogen compounds sorbed by clays, Geochim. Cosmochim. Ac., 41(6), 765-776, http://dx.doi.org/10.1016/0016-7037(77)90047-3
  • 54. Orłowski A., 2009, Acoustic tracking dynamic phenomena in marine ecosystems, Hydroacoustics, 12, 167-180.
  • 55. Parsons T.R., Maaita Y., Lalli C.M., 1985, A manual of chemical and biological methods for seawater analysis, Pergamon Press, Oxford, 201 pp.
  • 56. Piker L., Schmaljohann R., Imhoff J., 1998, Dissimilatory sulfate reduction and methane production in Gotland Deep sediments (Baltic Sea) during a transition period from oxic to anoxic bottom water (1993-1996), Aquat. Microb. Ecol., 14(2), 183-193, http://dx.doi.org/10.3354/ame014183
  • 57. Pimenov N.V., Ulyanova M.O., Kanapatsky T.A., Veslopolova E.F., Sigalevich P.A., Sivkov V.V., 2010, Microbially mediated methane and sulfur cycling in pockmark sediments of the Gdańsk Basin, Baltic Sea, Geo-Mar. Lett., 30(3-4), 439-448, http://dx.doi.org/10.1007/s00367-010-0200-4
  • 58. Reeburgh W. S., 1976, Methane consumption in Cariaco Trench waters and sediments, Earth Planet. Sci. Lett., 28(3), 337-344, http://dx.doi.org/10.1016/0012-821X(76)90195-3
  • 59. Reeburgh W.S., 1996, ‘Soft spots’ in the global methane budget, [in:] Microbial growth on C1 compounds, M.E. Lidstrom & F.R. Tabita (eds.), Kluwer Acad. Publ., Dordrecht, 334-342.
  • 60. Reindl A., Bolałek J., 2012, Methane flux from sediment into near-bottom water in the coastal area of the Puck Bay (Southern Baltic), Oceanol. Hydrobiol. St., 41(3), 40-47, http://dx.doi.org/10.2478/s13545-012-0026-y
  • 61. Rudowski S., Szefler K., Zajfert G., 2010, Gas in sediments of the Puck Bay, [in:] Geologia i geomorfologia Pobrzeża i południowego Bałtyku, Vol. 8, 119-129, (in Polish).
  • 62. Sampei Y., Matsumoto E., 2001, C/N ratios in a sediment core from Nakaumi Lagoon, southwest Japan - usefulness as an organic source indicator, Geochem. J., 35(3), 189-205, http://dx.doi.org/10.2343/geochemj.35.189
  • 63. Schmale O., Schneider von Deimling J., Gülzow W., Nausch G., Waniek J.J., Rehder G., 2010, Distribution of methane in the water column of the Baltic Sea, Geophys. Res. Lett., 37(12), L12604, http://dx.doi.org/10.1029/2010GL043115
  • 64. Schulz H.D., 2006, Quantification of early diagenesis: dissolved constituents in marine pore water, [in:] Marine geochemistry, H.D. Schulz & M. Zabel (eds.), 75-125.
  • 65. Seeberg-Elverfeldt J., Schlüter M., Feseker T., Kölling M., 2005, Rhizon sampling of pore waters near the sediment/water interface of aquatic systems, Limnol. Oceanogr. Meth., 3, 361-371, http://dx.doi.org/10.4319/lom.2005.3.361
  • 66. Schüler F., 1952, Untersuchungen über die Mächtigkeiten von Schlickschichten mit Hilfe des Echographen, Deutsche Hydrographische Zeitschrift, 5, 220-231.
  • 67. Shepard F.P., 1954, Nomenclature based on sand-silt-clay ratios, J. Sediment. Petrol., 24(3), 151-158, http://dx.doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D
  • 68. Szczepańska T., Uścinowicz S., 1994, Geochemical atlas of the southern Baltic, Pol. Geol. Inst., Warszawa, 1-55, (in Polish).
  • 69. Szczepańska A., Zaborska A., Maciejewska A., Kuliński K., Pempkowiak J., 2012, Distribution and origin of organic matter in the Baltic Sea sediments dated with 210Pb and 137Cs, Geochronometria, 39(1), 1-9, http://dx.doi.org/10.2478/s13386-011-0058-x
  • 70. Tęgowski J., Jakacki J., Klusek Z., Rudowski S., 2003, Nonlinear acoustical methods in the detection of gassy sediments in the Gulf of Gdańsk, Hydroacoustics, 5-6, 151-158.
  • 71. Thießen O., Schmidt M., Theilen F., Schmitt M., Klein G., 2006, Methane formation and distribution of acoustic turbidity in organic-rich surface sediments in the Arkona Basin, Baltic Sea, Cont. Shelf Res., 26(19), 2469-2483, http://dx.doi.org/10.1016/j.csr.2006.07.020
  • 72. Thomsen T.R., Finster K., Ramsing N.B., 2001, Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment, Appl. Environ. Microb., 67(4), 1646-1656, http://dx.doi.org/10.1128/AEM.67.4.1646-1656.2001
  • 73. Treude T., 2003, Anaerobic oxidation of methane in marine sediments, Ph.D. thesis, Univ. Bremen., 272 pp.
  • 74. Uścinowicz S., 1995, Quaternary thickness, [in:] Geological atlas of the southern Baltic, 1:500 000, J.E. Mojski, R. Dadlez, B. Słowanska, S. Uścinowicz & J. Zachowicz (eds.), Pol. Geol. Inst., Sopot-Warszawa, 1-63, (in Polish).
  • 75. Uścinowicz S. (ed.), 2011, Geochemistry of Baltic Sea surface sediments, Pol. Geol. Inst.- Nat. Res. Inst., Warsaw, 355 pp.
  • 76. Vogler S., Szymczycha B., Gentz T., Dellwig O., Kotwicki L., Endler R., Pempkowiak J., Węsławski J.M., Schlüter M., Böttcher M.E., 2010, The impact of submarine ground water discharge on a coastal ecosystem of the southern Baltic Sea: Results from the BONUS+ project AMBER, Geophys. Res. Abs., 12, 2974 pp.
  • 77. Wever Th.F., Abegg F., Fiedler H.M., Fechner G., Stender I.H., 1998, Shallow gas in the muddy sediments of Eckernförde Bay, Germany, Cont. Shelf Res., 18(14-15), 1715-1739, http://dx.doi.org/10.1016/S0278-4343(98)00055-7
  • 78. Wever Th.F., Lühder R., Voss H., Knispel U., 2006, Potential environmental control of free shallow gas in the seafloor of Eckernförde Bay, Germany, Mar. Geol., 225(1-4), 1-4, http://dx.doi.org/10.1016/j.margeo.2005.08.005
  • 79. Whiticar M.J., 1982, The presence of methane bubbles in the acoustically turbid sediments of Eckernförde Bay, Baltic Sea, [in:] Dynamic environment of the ocean floor, K.A. Fanning & F.T. Manheim (eds.), Lexington Books, Lexington, MA, 219-235.
  • 80. Whiticar M.J., 2002, Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity, pockmarks and freshwater seepages in Eckernförde Bay, Mar. Geol., 182(1-2), 29-53, http://dx.doi.org/10.1016/S0025-3227(01)00227-4
  • 81. Whiticar M.J., Faber E., Schoell M., 1986, Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence Geochim. Cosmochim. Ac., 50(5), 693-709, http://dx.doi.org/10.1016/0016-7037(86)90346-7
  • 82. Wilkens R.H., Richardson M.D., 1998, The influence of gas bubbles on sediment acoustic properties: in situ, laboratory, and the oretical results from Eckernförde Bay, Baltic Sea, Cont. Shelf Res., 18(14-15), 1859-1892, http://dx.doi.org/10.1016/S0278-4343(98)00061-2
  • 83. Witek Z., Ochocki S., Maciejowska M., Pastuszak M., Nakonieczny J., Podgórska B., Kownacka J.M., Mackiewicz T., Wrzesińska-Kwiecień M., 1997, Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic), Mar. Ecol.-Prog. Ser., 148, 169-186, http://dx.doi.org/10.3354/meps148169
  • 84. Witek Z., Ochocki S., Nakonieczny J., Podgórska B., Drgas A., 1999, Primary production and decomposition of organic matter in the epipelagic zone of the Gulf of Gdańsk, an estuary of the Vistula, ICES J. Mar. Sci., 56(Suppl.), 3-14.
  • 85. Yamamoto S., Alcauskas J.B., Crozier T.E., 1976, Solubility of methane in distilled water and seawater, J. Chem. Eng. Data, 21(1), 78-80, http://dx.doi.org/10.1021/je60068a029
  • 86. Zehnder A.J.B., Brock T.D., 1980, Anaerobic methane oxidation: occurrence and ecology, Appl. Environ. Microb., 39(1), 194-20
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f360fdc-4bbc-410d-bdd6-3cbf717970cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.