PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinovea analysis of high-speed video recording to determine kinematics of double pendulum in the long time scale

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Measurement of position and velocity of rotating objects relies on installation of additional devices, which can significantly change their dynamic properties. Non-contact methods appear not to have the above-mentioned drawback. To determine the angular kinematics, a video measurement technique stands as a non-contact alternative. The rotational motion can be recorded with a high-speed camera and then analyzed with free and open-source tracking software which allows one to detect and digitize positions of chosen markers and then to calculate angular positions of selected elements. Differentiation process determines rotary speed values. Analysis of long-term dynamical behavior by recording data visualized as position maps which possess half of the information usually stored in the well-known Poincaré maps is proposed.
Rocznik
Strony
art. no. e147918
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, Lodz, 90-924, Poland
Bibliografia
  • [1] T. Shinbrot, C. Grebogi, J. Wisdom, and J.A. Yorke, “Chaos in a double pendulum,” Am. J. Phys., vol. 60, no. 6, pp. 491–499, 1992.
  • [2] R.B. Levien and S.M. Tan, “Double pendulum: An experiment in chaos,” Am. J. Phys., vol. 61, p. 1038–1044, 1993.
  • [3] D. Dudkowski, J. Wojewoda, K. Czolczynski, and T. Kapitaniak, “Transient chimera–like states for forced oscillators,” Chaos, p. 011102, 2020.
  • [4] D. Dudkowski, J. Wojewoda, K. Czolczynski, and T. Kapitaniak, “Is it really chaos? the complexity of transient dynamics of double pendula,” Nonlinear Dyn., vol. 102, pp. 759–770, 2020.
  • [5] J. Poonyawatpornkul and P. Wattanakasiwich, “High-speed video analysis of damped harmonic motion,” Phys. Educ., vol. 48, no. 6, p. 782, 2013.
  • [6] “Step by step and frame by frame – workflow for efficient motion tracking of high-speed movements in animals,” Zoology, vol. 141, p. 125800, 2020.
  • [7] M.M. Baclig, N. Ergezinger, Q. Mei, M. Gül, S. Adeeb, and L. Westover, “A deep learning and computer vision based multi-player tracker for squash,” Appl. Sci., vol. 10, no. 24, p. 8793, 2020.
  • [8] N. Feng and P. Gao, “The accurate repair of image contour of human motion tracking based on improved snake model,” Complexity, 2021.
  • [9] K. Kirilova and P. Gatev, “A complex semi-automatic method for kinetic and two-dimensional kinematic motion analysis for posture and movement investigation,” Int. J. Bioautomotion, vol. 22, no. 1, 2010.
  • [10] N. Adnan, M.A. Patar, H. Lee, S.-I. Yamamoto, L. Young, and J. Mahmud, “Biomechanical analysis using kinovea for sports application,” in IOP Conference Series: Materials Science and Engng, 2018, pp. 1–9.
  • [11] R. DeSerio, “Chaotic pendulum: The complete attractor,” Am. J. Phys., vol. 71, pp. 250–257, 2003.
  • [12] M. Haris, J. Memon, and M. Farhan, “Image processing techniques for fast and accurate estimation of pose of a double pendulum,” in 4th International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing. Zagreb, Croatia, 2020, May 2020, pp. 232–236.
  • [13] A. Myers, J.R. Tempelman, D. Petrushenko, and F.A. Khasawneh, “Low-cost double pendulum for high-quality data collection with open-source video tracking and analysis,” HardwareX, vol. 8, pp. 1–23, 2020.
  • [14] G. Lee, “The simulation and analysis of a single and double inverted pendulum with a vertically-driven pivot,” 2011, School of Physics, Georgia Tech.
  • [15] P. Devaux, V. Piau, O. Vignaud, G. Grosse, R. Olarte, and A. Nuttin, “Cross-camera tracking and frequency analysis of a cheap slinky wilberforce pendulum,” Emergent Scientist, vol. 3, no. 1, 2019.
  • [16] C. Kulp, D. Schlingmann, P. Ramsey, J. Hoskins, and K. Roberts, “Tracking the motion of a double pendulum using mathematica,” J. Plan. Educ. Res., vol. 12, no. 2, pp. 99–109, 2007.
  • [17] J.Z. Blumoff, “Exploration of the double pendulum,” 2010, Georgia Institute of Technology, Atlanta, Georgia.
  • [18] A.K. Golinska, “Poincaré plots in analysis of selected biomedical signals,” Stud. Log. Gramm. Rhetor., vol. 48, no. 35, 2013.
  • [19] Y. Liang and B. Feeny, “Parametric identification of a chaotic base-excited double pendulum experiment,” Nonlinear Dyn., vol. 52, p. 181–197, 2007.
  • [20] T.S. Parker and L.O. Chua, Practical Numerical Algorithms for Chaotic Systems. New York, Berlin, Heidelberg: Springer, 1989.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f2a0240-08b3-40aa-bb16-9a9a2637cb6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.