PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Usage of 3D prints with ceramic coating applied as neurological tools – preliminary research

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper shows a preliminary study of the basic strength parameters of printed parts made of biocompatible polymers with ceramic layers applied to increase the strength of the tool cutting surface. Methods: The specimens were made from different materials and using different 3D printing technologies and the working surfaces that will eventually form the cutting element of the tool were coated with Al2O3. Gloss tests were conducted, properties of the coating, a scratch test of the coated surface, also evaluated surface topography. Results: Based on the conducted research, it was found that polymeric materials are characterized by sufficient strength and can be used for disposable tools, however, the use of thin layers of Al2O3 significantly increases the surface strength parameters, which may have a significant impact on the reliability and durability of the tools. The polymer surface covered with an Al2O3 layer is characterised by increased scratch resistance ranging from 24% to 75% depending on the core material and printing technology. The gloss of the surfaces is disproportionately low compared to currently used metal tools, which indicates that they can be used in endoscopic procedures. Conclusions: Based on the conducted research, it was found that the use of thin layers of Al2O3 covering polymer 3D prints is an excellent way to increase strength parameters such as scratch resistance, tribological parameters and light reflections arising on the surface as a result of endoscopic lighting are disproportionately small compared to metallic biomaterials. This gives great hope for using polymer 3D prints for personalised neurosurgical tools.
Rocznik
Strony
37--46
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Częstochowa, Poland.
  • Faculty of Management, Czestochowa University of Technology, Częstochowa, Poland.
  • Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Częstochowa, Poland.
  • Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Częstochowa, Poland.
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland.
autor
  • National Centre for Nuclear Research, Material Physics Departament, Otwock-Swierk, Poland.
  • National Centre for Nuclear Research, Material Physics Departament, Otwock-Swierk, Poland.
autor
  • Department of Head and Neck Surgery for Children and Adolescents, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
  • Department of Head and Neck Surgery for Children and Adolescents, Prof. St. Popowski Regional Specialized Children’s Hospital, Olsztyn, Poland.
  • Department of Head and Neck Surgery for Children and Adolescents, Prof. St. Popowski Regional Specialized Children’s Hospital, Olsztyn, Poland.
Bibliografia
  • [1] BARAN E., ERBIL H., BARAN E.H., ERBIL H.Y., Surface modification of 3D printed PLA objects by fused deposition modeling: a review, Colloids and Interfaces, 2019, 3, 43, DOI: 10.3390/COLLOIDS3020043.
  • [2] BORETTI A., A perspective on 3D printing in the medical field, Annals of 3D Printed Medicine, 2024, February, 13, 100138, https://doi.org/10.1016/j.stlm.2023.100138
  • [3] CHODUN R., SKOWROŃSKI L., OKRASA S., WICHER B., NOWAKOWSKA-LANGIER K., ZDUNEK K., Optical TiO2 layers deposited on polymer substrates by the Gas Injection Magnetron Sputtering technique, Applied Surface Science, 2019, 466, https://doi.org/10.1016/j.apsusc.2018.10.003
  • [4] CULMONE C., SMIT G., BREEDVELD P., Additive manufacturing of medical instruments: A state-of-the-art review, Additive Manufacturing, 2019, May, 27, 461–473, https://doi.org/10.1016/j.addma.2019.03.015.
  • [5] DOMINGO-ESPIN M., PUIGORIOL-FORCADA J.M., GARCIA-GRANADA A.A., LLUMÀ J., BORROS S., REYES G., Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts, Materials & Design, 2015, 83, 670–677, https://doi.org/10.1016/j.matdes.2015.06.074
  • [6] FRIZZIERO L., SANTI G.M., LEON-CARDENAS CH., FERRETTI., SALI M., GIANESE F., CRESCENTINI N., DONNIC G., LIVERANI A., TRISOLINO G., ZARANTONELLO P., STALLONE S., DI GENNARO G.L., Heat Sterilization Effects on Polymeric, FDM-Optimized Orthopedic Cutting Guide for Surgical Procedures, J. Funct. Biomater, 2021, 12 (4), 63, DOI: 10.3390/jfb12040063.
  • [7] GEORGE M., AROOM K., HAWES H., GILL B., LOVE J., 3D Printed Surgical Instruments: The Design and Fabrication Process, World Journal of Surgery, 2017, 41 (1), 314–319, https://doi.org/10.1007/s00268-016-3814-5
  • [8] GRIFFITHS C.A., HOWARTH J., ROWBOTHAM G.A., REES A., Effect of build parameters on processing efficiency and material performance in fused deposition modelling, Procedia CIRP, 2016, 49, 28–32, https://doi.org/10.1016/j.procir.2015.07.024
  • [9] HAMDI M., SUE H.J., Effect of color, gloss, and surface texture perception on scratch and mar visibility in polymers, Materials and Design, 2015, 83, 528–535, DOI: 10.1016/j.matdes.2015.06.073.
  • [10] IGNELL S., KLEIST U., RIGDAHL M., Visual percertion and measurements of texture and gloss of injection-molded plastics, Polymer Engineering and Science, 2009, 49 (2), 344–353, https://doi.org/10.1002/pen.21279
  • [11] KONDOR S.A., GRANT C.G., LIACOURAS P.C., SCHMID M.J., PARSONS L.M., RASTOGI V.K., SMITH L.S., MACY B., SABART B., MACEDONIA C.R., On Demand Additive Manufacturing of a Basic Surgical Kit, Journal of Medical Devices-transactions of the Asme, 2013, 7, 030916, DOI: 10.1115/1.4024490.
  • [12] KONDOR S.A., GRANT C.G., LIACOURAS P.C., SCHMID M.J., PARSONS L.M., MACY B., SABART B., MACEDONIA C.R., Personalized Surgical Instruments, Journal of Medical Devices-transactions of the Asme, 2013, 7, 030934, DOI: 10.1115/1.4024487.
  • [13] LANDY M.S., A gloss on surface properties, Nature, 2007, 447, 158–159, https://doi.org/10.1038/nature05714
  • [14] MURO-FRAGUAS I., SAINZ-GARCÍA A., LÓPEZ M., ROJO-BEZARES B., MÚGICA-VIDAL R., SAINZ-GARCÍA E., TOLEDANO P., SÁENZ Y., GONZÁLEZ-MARCOS A., ALBA-ELÍAS F., Antibiofilm coatings through atmospheric pressure plasma for 3D printed surgical instruments, Surface and Coatings Technology, 2020, 399, 126163, DOI: 10.1016/j.surfcoat.2020.126163.
  • [15] OKRASA S., WILCZOPOLSKA M., STRZELECKI G., NOWAKOWSKA-LANGIER K., CHODUN R., MINIKAYEV R., KRÓL K., SKOWROŃSKI L., NAMYŚLAK K., WICHER B., WIRASZKA A., ZDUNEK K., The influence of thermal stability on the properties of Cu3 N layers synthesized by pulsed magnetron sputtering method, Thin Solid Films, 2021, 735, DOI: 10.1016/j.tsf.2021.138889.
  • [16] PN-EN ISO 2813:2001.
  • [17] POSADOWSKI W.M., Pulsed magnetron sputtering of reactive compounds, Thin Solid Films, 1999, 85–89, 343–344, DOI: 10.1016/S0040-6090(98)01580-6.
  • [18] POSADOWSKI W.M., Pulsed magnetron sputtering of reactive compounds, Thin Solid Films, 1999, 85, 343–344, DOI: 10.1016/S0040-6090(98)01580-6.
  • [19] POSADOWSKI W.M., WIATROWSKI A., DORA J., RADZIMSKI Z.J., Magnetron sputtering process control by medium-frequency power supply parameter, Thin Solid Films, 2008, 516 (14), 4478, DOI: 10.1016/j.tsf.2007.05.077.
  • [20] REDUTKO J., KALWIK A., SZAREK A., Influence of Curing Time on Properties of Dental Photosensitive Resin Applied in DLP Technique of 3D Printing, Arch. Metall. Mater., 2021, 66 (2), 419–424, DOI: 10.24425/amm.2021.135873.
  • [21] ROY R. MUKHOPADHYAY A., Tribological studies of 3D printed ABS and PLA plastic parts, Materials Today: Proceedings, 2021, 41, 856–862, https://doi.org/10.1016/j.matpr.2020.09.235
  • [22] SHAHRUBUDIN N., KOSHY P., ALIPAL J., KADIR M., LEE T., Heliyon, 2020, 6 (4), p.e 03734, DOI: 10.1016/j.heliyon.2020.e03734.
  • [23] SHILO D., EMODI O., BLANC O., NOY D., RACHMIEL A., Printing the future – updates in 3D printing for surgical applications, Rambam Maimonides Med. J., 2018, 9 (3), DOI: 10.5041/RMMJ.10343.
  • [24] SINGH R., SURI A., Three-Dimensional Printed Ergonomically Improved Microforceps for Microneurosurgery, World Neurosurgery, 2020, 141, 271–277, https://doi.org/10.1016/j.wneu.2020.05.105
  • [25] STRZELECKI G.W., NOWAKOWSKA-LANGIER K., CHODUN R., OKRASA S., WICHER B., ZDUNEK K., Influence of modulation frequency on the synthesis of thin films in pulsed magnetron sputtering processes, Materials Science-Poland, 2018, 36, 697–703, DOI: 10.2478/msp-2018-0078.
  • [26] TINO R., MOORE R., ANTOLINE S., RAVI P., WAKE N., IONITA C., MORRIS J., DECKER S., SHEIKH A., RYBICKI F., COVID-19 and the role of 3D printing in medicine, 3D Print Med., 2020, 6, 11, DOI: 10.1186/s41205-020-00064-7.
  • [27] WONG J.Y., PFAHNL A.C., 3D Printing of Surgical Instruments for Long-Duration Space Missions, Aviation, Space, and Environmental Medicine, Aerospace Medical Association, 2014, 85 (7), July, 758–763 (6), DOI: 10.3357/ASEM.3898.2014.
  • [28] ZDUNEK K., NOWAKOWSKA-LANGIER K., CHODUN R., DORA J., OKRASA S., TALIK E., Optimization of gas injection conditions during deposition of AlN layers by novel reactive GIMS method, Materials Science-Poland. 2014, 32 (2), 171–175, DOI: 10.2478/s13536-013-0169-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f26958c-7ded-4b0d-b02e-bfb9a55e36b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.