PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Facilitating optimal operations of a wave energy converter using a preeminent mooring line: an entropy weight-VIKOR method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study employed viable methods for the selection of a preeminent mooring line amongst other alternatives for the mooring of a floating wave energy converter (WEC) in shallow waters. Conventional mooring lines for WEC mooring are identified for an optimal selection exercise. A combination of the Entropy Weight and Visekriterijumska Optimizacijia I Kompromisno Resenje (VIKOR) methods is utilized in the aforementioned exercise. The two methods are effectively used in an assessment of the attributes and performance of various mooring lines in practical application. The result obtained demonstrated that a steel wire rope is the best mooring line suitable for WEC system operations. It constitutes a good reference to marine and offshore engineering industries in decision making related to optimal mooring lines suitable for the mooring of a WEC system in shallow waters.
Rocznik
Strony
77--83
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Department of Marine Engineering, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria
  • Department of Marine Engineering, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria
Bibliografia
  • 1. IEA (2014). “Word Energy Outlook 2014”, https://www.iea. org/reports/world-energy-outlook-2014. Accessed on 18th April, 2021.
  • 2. Cruz, J. (2008), “Ocean Wave Energy Current Status and Future Perspectives”, Springer Publisher, Berlin, Germany.
  • 3. Clément, A., McCullen, P., Falcao, A., Fiorentino, A., Gardener, F., Hammarlund, K., Lemonis, G., Lewis, T., Nielsen, K., Petroncini, S., Pontes, M. T. Schild, P., Sjöström, B., Sørensen, H. C., and Thorpe, T. (2002), “Wave Energy in Europe: Current Status and Perspectives”, Journal of Renewable and sustainable Energy Reviews, Vol. 6. Issue 5, pp. 405-431.
  • 4. Pelc, R. and Frjita, R. M. (2002), “Renewable Energy from the Ocean”, Marine Policy, Vol. 26, Issue 6, pp. 471-479.
  • 5. Czech, B. and Bauer, P. (2012), “Wave Energy Converter Concepts: Design Challenges and Classification”, IEEE Industrial Electronics Magazine, Vol. 6, No 2, pp. 4-16.
  • 6. Amran, N. Koto, J. and Siow, S. L. (2016), “Review on Polyester Mooring Lines of Offshore Structures”, Journal of Ocean, Mechanical and Aerospace Science and Engineering, Vol. 35, pp. 7-12.
  • 7. Chevillotte, Y., Marco, Y., Bles, G., Arhant, M. and Davies, P. (2020), “Fatigue of Polyamide mooring ropes for floating wind turbines” Ocean Engineering, Vol. 199, pp. 107011.
  • 8. Samuel W., Johanning, L., Peter, D. and Banfield, S. J. (2015), “Synthetic Mooring Ropes for Marine Renewable Energy Applications”, Journal of Renewable Energy, Vol. 83. pp. 1268-1278.
  • 9. Qiao, D. Haider, R. Ning, D. and Li, B. (2020), “Review of Wave Energy Converter and Design of Mooring System”, Sustainability, Vol. 12, No. 19, pp. 1-31.
  • 10. Dang, V. T. and Dang, W. V. T. (2019), "Multi-criteria Decision-making in the Evaluation of Environmental Quality of OECD Countries: The Entropy Weight and VIKOR Methods", International Journal of Ethics and Systems, Vol. 36, Issue 1, pp. 119-130.
  • 11. Rao, A. V. A. R. D, Sai, N. V. and Babu, K. P. (2017), “An Integrated Approach using VIKOR and ENTROPY Methods for a Supplier Selection Problem”, International Journal of Innovations in Engineering and Technology, Vol. 8, Issue 3, pp. 1-9.
  • 12. Priti, Singh, M. and Singh, S. (2021), “Micro-Machining of CFRP composite using Electrochemical Discharge Machining and Process Optimization by Entropy-VIKOR method”, Materials Today: Proceedings, Vol. 44, Part 1, pp. 260-265.
  • 13. Narayanamoorthy, S., Geetha, S., Rakkiyappan, R., and Joo, Y. H. (2019), “Interval-Valued Intuitionistic Hesitant Fuzzy Entropy Based VIKOR Method for Industrial Robots Selection”, Expert Systems with Applications, Vol. 121, pp. 28-37.
  • 14. Sharma, A., Chauhan, R. Singh, T., Kumar, A., Kumar, R., Kumar, A., and Sethia, M. (2017), “Optimizing Discrete V Obstacle Parameters using a Novel Entropy-VIKOR Approach in a Solar Air Flow Channel”, Renewable Energy, Vol. 106, pp. 310-320.
  • 15. Dehdasht, G., FerwatiI, M. S., Zin, R. M. and Abidin, N. Z. (2020), “A Hybrid Approach using Entropy and TOPSIS to Select Key Drivers for a Successful and Sustainable Lean Construction Implementation”, PLoS ONE 15(2): e0228746, pp. 1-32.
  • 16. Zhu, Y., Tian, D and Yan, F. (2020), “Effectiveness of Entropy Weight Method in Decision-Making “, Mathematical Problems in Engineering, Vol. 2020, pp. 1-5.
  • 17. Opricovic, S. (1998), “Multicriteria Optimization of Civil Engineering Systems”, Faculty of Civil Engineering, Belgrade, Vol. 2, pp. 5-21.
  • 18. Opricovic, S. and Tzeng, G., (2004), “Compromise solution by MCDM methods: A Comparative Analysis of VIKOR and TOPSIS”, European Journal of Operational Research, Vol. 156, pp. 445-455.
  • 19. Dantsoho, A. M. (2015), “Risk-based Framework for Safety Management of Onshore Tank Farm Operations”, Ph.D Thesis, Liverpool John Moores University, UK.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f268aae-58a1-4e75-89ea-9dad5a4155c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.