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Abstract 

Hardware implementations of cryptographic algorithms are ubiquitous in contemporary computer systems where 

they are used to ensure appropriate level of security e.g. in high-speed data transmission, authentication and access 

control, distributed cloud storage, etc.. In this paper we evaluate size and speed efficiency of FPGA 

implementations of selected popular cryptographic algorithms in the newest cost-sensitive Spartan-7 devices form 

Xilinx, Inc.. The investigated set of algorithms included four examples: the AES-128 standard symmetric block 

cipher, the BLAKE-256 hash function and two size variants of the KECCAK-f[b] compression function, b = 400 

and 1600, with the larger variant being used as the core of the new SHA-3 standard. The main aim of this research 

was to provide a uniform and comparable implementation approach for all the ciphers so that the new potentials 

of the Spartan-7 internal architecture would be put to the test in realization of their specific cryptographic 

transformations and data distribution. Each of the four algorithms was implemented in five architectures: the basic 

iterative one (with one instance of the cipher round instantiated in hardware) plus two loop unrolled ones (with 

two and four or five rounds in hardware) and their two pipelined variants (with registers at the outputs of each 

round enabling parallel processing of multiple streams of data). Uniform implementation methodology applied to 

20 cases of cipher & architecture combinations created a consistent testbed, producing comparable results which 

allowed to evaluate efficiency of the new hardware platform in implementation of the different algorithms in 

various unrolled and pipelined organizations.  

 

1. Introduction 

Contemporary IT systems, being most often 

geographically distributed complex systems exposed 

to a hostile environment, must ensure appropriate 

level of data security and the only way of meeting this 

demand is application of suitable cryptographic 

algorithms. In the recent two decades a lot of research 

was devoted to developing new and more efficient 

algorithms for this purpose. When high data 

throughput is required their implementation in 

hardware rather than software is often the only 

solution and this aspect of cipher realization is taken 

into account by their authors right from the start of 

development. Among the hardware implementation 

options the programmable devices and in particular 

Field Programmable Gate Arrays (FPGA) are often 

the optimal choice thanks to their flexibility, short 

development cycle and low prototyping cost [6]-[7], 

[9]. 

But contemporary ciphers are one of the most difficult 

kind of designs for implementation in FPGA devices. 

Their large sizes, irregular internal processing and 

random data distribution resulting in chaotic yet 

widely spread routing create a lot of problems for 

implementation tools and stretch capabilities of the 

arrays to their limits. Therefore suitability of a specific 

cipher (which furthermore can be expressed in 

hardware in various architectures of parallel or 

sequential processing) for an FPGA implementation is 

an important issue depending additionally on 

particularities of the programmable device selected as 

the hardware platform. 

In this context the aim of the paper was to evaluate 

size and speed efficiency of FPGA implementations 

of selected popular cryptographic algorithms in the 

newest cost-sensitive Spartan-7 devices form Xilinx, 

Inc.. The investigated set of algorithms included four 

examples: the AES-128 standard symmetric block 

cipher, the BLAKE-256 hash function and two size 
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variants of the KECCAK-f[b] compression function, 

b = 400 and 1600, with the larger variant being used 

as the core of the new SHA-3 standard. Each of these 

algorithms was implemented in five architectures: the 

basic iterative one (with one instance of the cipher 

round instantiated in hardware) plus two loop unrolled 

ones (with two and four or five rounds in hardware) 

and their two pipelined variants (with registers at the 

outputs of each round enabling parallel processing of 

multiple streams of data). Uniform implementation 

methodology applied to 20 cases of cipher & 

architecture combinations created a consistent 

testbed, producing comparable results which allowed 

to evaluate implementation efficiency of the different 

algorithms in various unrolled and pipelined 

organizations on the new hardware platform which is 

available commercially only form 2017. 

Contents of the paper is organized as follows. 

Construction of the algorithms is outlined briefly in 

the second chapter in order to identify their main 

characteristics which affect efficiency of FPGA 

implementation. The third chapter describes the five 

architectures every cipher is implemented in and 

discusses organization of main Spartan-7 resources 

which are fundamental in cipher realizations. The 

results obtained after implementation of the 20 test 

cases are the subject of the fourth chapter: after 

evaluation of the main size and performance 

characteristics the analysis is extended with 

examination of the derived – loop unrolled and 

pipelined – architectures in comparison to the basic 

iterative one which allowed to assess scalability of the 

loop unrolling mechanism in the different ciphers on 

the new platform. Conclusions completes the text in 

the last, fifth chapter. 

2. The algorithms 

2.1 AES 

The Advanced Encryption Standard was developed in 

an open competition initiated by U.S. National 

Institute of Standards and Technology in order to 

create a new symmetric block cipher which would 

stand sufficiently strong against increasing strength of 

new attacks backed up by a growing computational 

power of dedicated cryptographic hardware. The 

contest ended in 2001 with selecting the Rijndael 

algorithm – a proposal which came from two Belgian 

cryptographers: Joan Daemen and Vincent Rijmen. 

In this work we will test AES-128 – the 128-bit size 

version of the cipher [8]. The algorithm in general is a 

substitution-permutation network which processes the 

encoded chunk of data – the  state – in a series of nr = 

10 almost identical rounds. Each round uses its own 

key which is generated from the user-supplied external 

key by a separate key expansion routine. Cipher 

encoding and key expansion share very similar set of 

elementary transformations and constitute two 128b-

wide processing paths which needs to be executed in 

parallel, hence the total data width of this algorithm in 

hardware is 256b. 

The state S is constructed as a 44 array of bytes and 

each round apply four elementary transformations 

upon it in the following order (see the right-hand part 

of Figure 1): 

- substitution SBox where each byte of the state is 

replaced by another one according to a specific 

invertible static transcoding function; 

- row shifting SR where each k-th row (k = 0…3) of 

the state array is rotated by k columns to the left in 

encryption or to the right in decryption; 

- column mixing MC operating on the whole state 

columns rather than on individual bytes and 

calculating its result through an involved series of 

shift and xor operations (which models polynomial 

multiplication modulo x4 + 1 over GF(28) ); 

- key mixing where the round key is bitwise  xor’ed 

with the state vector. 

The key schedule (the left-hand part of Figure 1) 

works on a set of four wi words initialized with the 

external key and produces the round keys with 

identically defined SBox substitutions and bitwise xor 

operations. 
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Figure 1. Internal composition of one AES round: key 

expansion and cipher paths 

 

Putting aside row shifting (which in hardware is just a 

static signal re-ordering and can be accomplished 

completely in routing, without absorbing any logic 

resources), the main challenge in realization of this 

algorithm in an FPGA array is efficient expression of 

column mixing and byte substitution. Especially the 

latter operation, being essentially a wide 8b to 8b 

boolean function, is difficult in implementation with  

LUT generators which must be combined to store 256 
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bytes of its truth table. In the older Spartan-3 devices 

each SBox aggregated 16 LUTs plus some 

multiplexing logic and this not only produced  

enlarged design size but also remarkably complicated 

overall routing leading consequently to long 

propagation delays and low operating frequencies. It 

was shown in [11] that these problems were partially 

alleviated in the newer Spartan-6 family which 

offered 4 times larger LUT tables. 

2.2 BLAKE 

Building on positive experiences of the AES contest, 

in 2007 NIST started another competition aimed at 

developing a new hash method which would 

eventually replace the SHA-2 standard. The BLAKE 

algorithm, proposed by Jean-Philippe Aumasson, 

Luca Henzen, Willi Meier, and Raphael C.-W. Phan, 

was selected as one of the strictest 5 finalists and, 

although by the final NIST decision it ultimately lost 

to KECCAK, the cipher was repeatedly acclaimed in all 

stages of competition for its good cryptographic 

strength and great performance, especially in 

software. 

In this work we are considering the BLAKE-256 size 

variant which generates 256b hash output, internally 

handling 32b words and 512b state. At the heart of the 

method [1] there is a compression function which is 

iteratively applied to 512b blocks of an arbitrarily long 

input message and the FPGA implementation of this 

function is the subject of our investigation.  

Processing of the compression is organized around 

a 512b state seen as a 44 matrix of 32b words v0… 

v15. Initially the state is filled with the current chain 

hash value and then it goes through a series of nr = 14 

rounds with each round modifying twice all the words 

by applying a G function: 

 

   G0(v0, v4, v8, v12);    G1(v1, v5, v9, v13); 

   G2(v2, v6, v10, v14);   G3(v3, v7, v11, v15); 
(1) 

 

and then 

 

   G4(v0, v5, v10, v15);   G5(v1, v6, v11, v12); 

   G6(v2, v7, v8, v13);    G7(v3, v4, v9, v14). 
(2) 

 

Each application of the Gi() function transforms a set 

of four state words given as explicit parameters; as an 

additional side input the message words are also 

loaded although they do not appear on the argument 

list. The ordinal number of the function i (0 ÷ 7) 

determines which permutation element r(i), message 

mi and constant ci words are used within the given Gi() 

instance – but other than that each instance applies the 

same processing transformations which are 

graphically represented in  Figure 2.  
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Figure 2. Operations of the G function – one eighth of 

the BLAKE round. 

 

The operations – which are the key elements in 

the hardware implementation – are: 

  - bitwise xor of two 32b vectors, 

+  - addition mod 232 of two vectors (i.e. regular 32b 

addition with carry out ignored), 

>>  - right rotation of a vector by a constant number of 

positions. 

Again, any rotation of a vector by a constant number 

of positions is a null-operator in hardware so the 

repertoire of BLAKE elementary operators is 

extremely simple: it includes only 32 adders and xor 

gates. This would be an ideal situation for 

optimization algorithms applied during the 

implementation process (a cascade of simple 

operators would be aggregated in large sized LUT 

generators) but such an optimization cannot deal 

efficiently with adders: in FPGA cells fast addition is 

accomplished with dedicated carry resources located 

along the LUT elements so the in-LUT aggregation 

must stop in the points where an addition appears on 

the data path. 

2.3 KECCAK-f[400] and f[1600] 

The KECCAK algorithm ([3]) was proposed for the 

SHA-3 contest by Guido Bertoni, Joan Daemen (co-

author of AES), Michaël Peeters and Gilles Van 

Assche. The proposal included actually a set of 7 size 

variants of the method from which the largest one – 

with 1600b state – in 2015 was selected for the new 

SHA-3 standard. 

In this work we will analyse hardware 

implementations of the KECCAK-f[b] permutation 

function which is at the core of the so called sponge 

construction [2] and calculates actual hash values of 

the input message. With its size parametrized by l 

which can take any integer value from 0 to 6, the 

function operate on a state of b = 25 × w bits (w = 2l, 

b = 25, 50, 100, 200, 400 800, and 1600) where 

a single word w (1, 2, 4, …32b) is called a lane. Any 

specific-size variant of the function computes its 

result by processing the state in a series of nr = 12 +  

2l rounds (12, 14, 16, 18, 20, 22, or 24). The rounds 
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are internally identical but they apply different w-bit 

constants in their final transformation. For the tests in 

this paper we have selected implementations of two 

size variants: a 20-round KECCAK-f[400] with the 

datapath width comparable to AES and the full-size, 

24-round KECCAK-f[1600] which is used in the SHA-

3 standard. 

 

           
 

 
 

 

Figure 3. Ideas of bit transformations inside 

a KECCAK round as presented by the authors in [3]. 

 

Both variants (as well as the 5 remaining ones) share 

the same parametrized definition. The specification 

describes one KECCAK round as a sequence of 5 

transformations of the state A which is represented as 

a 3-dimensional array A[5][5][w]. Each 

transformation is defined as a set of elementary 

operations on individual bits of the 25 lanes. Although 

the operations are as simple as xor or fixed rotations, 

their arguments are scattered pseudo-randomly all 

over the lanes so that it is virtually impossible to 

determine any regular datapaths inside the round in 

a manner similar to Figures 1 and 2. Of the three 

ciphers considered in this comparison KECCAK’S 

operations, although can be algebraically described in 

a concise way, are the most fine-grained ones. Figure 

3 presents only their basic ideas – yet not the round’s 

complete processing which results from their 

superposition. 

3. Implementing the ciphers in hardware 

3.1 Architectures of cipher modules 

Any round-based cipher can be efficiently 

implemented in software in an iterative manner: 

operations of a single round are expressed in the code 

once and then applied to the state variables repeatedly 

nr times in a loop. Depending on the in-round data 

dependencies, round processing can sometimes be 

parallelized and split into multiple concurrent threads 

of execution. Such a generic iterative idea can be 

mapped into hardware (either ASIC or FPGA) in 

different ways [4]. Overall, the two extreme 

approaches would be as follows: the loop of the cipher 

can be completely unrolled with all the rounds 

replicated as a cascade of nr hardware modules, or the 

loop is not unrolled at all with just one round module 

implemented in hardware and its operation on state 

signals is repeated nr times (that is, in nr clock cycles) 

in a manner resembling iterating in software. Between 

these extremes, as a mid-range solution the loop can 

be unrolled in part: one fourth, for example, of the 

rounds can be reproduced in hardware and the state 

signals would be passed through them four times.  

Another technique – called pipelining – well known 

in hardware organisation can be applied if there is 

a cascade of modules creating a long path of data 

propagation in the design: if registers are added at the 

end of each round, different sets of data can be 

processed simultaneously in each of the modules 

during the same clock cycle which introduces 

parallelism and increases greatly total throughput of 

the data stream being processed. Such an approach is 

usually very effective in cipher organizations because 

almost every unrolled implementation is naturally 

a very good candidate for pipelining. 

Notations for these cases will be adopted after 

universal taxonomy presented e.g. in [5]: an 

architecture with k unrolled rounds will be denoted as 

xk (including the basic iterative – x1) and their 

pipelined counterparts – as PPLk. 

In this study we followed the approach of our previous 

comparisons and, focusing on high speed 

architectures, each cipher was tested in 

5 architectures: 

 the basic iterative one - x1, 

 the two loop unrolled ones - x2 and x5, 

 their two pipelined variants - PPL2 and PPL5. 

Only in the case of the largest, 24-round KECCAK-

f[1600] algorithm as the longest unrolled architectures 

the x4/PPL4 organizations were taken instead of 

x5/PP5 – in order to keep integer divisions of the nr 

parameter. 

We should also note that the x1 organization of each 

cipher, being its smallest and thus easiest to 
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implement, will serve also as a point of reference in 

evaluation of the derived, larger constructions. 

3.2 Resources of the Spartan-7 devices 

Introduced commercially in 2017, Spartan-7 family is 

a relatively new addition to the latest, most advanced 

and most sophisticated 7th generation of 

programmable devices offered by Xilinx, Inc. – the 

inventor and still one of the most accomplished 

producers of the Field Programmable Gate Arrays. 

Fabricated in 28 nm HPL process the S7 chips can 

efficiently combine high performance with low cost 

and small form-factor packaging. In the internal 

organization special care was paid to enhancements in 

routing capabilities which often limit the effective 

capacity of the array in real applications: their 

organization is based on the Advanced Silicon 

Modular Block (ASMBL) architecture and helps in 

removing  bottlenecks which arise as a result of 

geometric layout constrains or global signals routing. 

Every node of the S7 array – a configurable logic 

block – consists of two slices and Figure 4 presents 

essential resources found in each of them [13]. For 

implementations of any cipher the most important are 

those used for realization of boolean logic because the 

combinational functions usually constitute the core of 

the cryptographic processing. In S7 the boolean 

functions are generated by 6-input Look Up Tables 

(LUT) with each individual LUT, being essentially a 

64-bit PROM memory, is capable of representing on 

its O6 output any function of up to 6 variables.  

Additionally, since the 6-input functions are relatively 

wide and sometimes larger number of  smaller ones 

are needed in the design, each LUT can be configured 

to compute two functions of 5 variables (holding two 

32-bit tables): in this case the second function is 

available on the optional O5 output but such a 

configuration is only possible if the two functions 

share the same 5 input signals. LUT usage statistics 

which is generated after implementation provides 

number of elements in the design with only the O6 

output used (generation of one maximum sized, 6-

input function), with both O5 and O6 used (generation 

of two 5-input functions) or only O5 (generation of 

a 5 or less input function). 

Every LUT output can be optionally stored in a flip-

flop. As usual in any FPGA array, S7 resources offer 

an abundance of flip-flops so creating e.g. the pipeline 

registers is not a problem. Therefore in the evaluations 

of this work we will not pay too much of an attention 

to the register usage because they are a secondary 

resource, insignificant in evaluation of cipher sizes 

even in the pipelined architectures. 

The figure also shows availability of F7 & F8 

multiplexers which are used for joining LUT outputs 

when creating functions of more than 6 variables. 

Each of the two pairs of LUTs inside the slice (A&B 

and C&D) can generate any 7-input function on the 

output of its F7 mux giving two independent functions 

per slice. Similarly, to implement an arbitrary 8-bit 

function its 256-bit truth table can be stored in the 4 

LUTs so that the function value propagates through 

a F7 mux to the output of the F8 mux. Thus all the 

logic of a slice suffices for representation of one 8-bit 

function – and it is worth noting that in the previous 

generations of devices with 4-input LUT elements 

synthesis of such a function was not possible within a 

slice, required inter-CLB signal routing and thus led 

to much worse performance parameters. 
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Figure 4. Resources inside one Spartan-7 slice. 

4. Implementation results 

4.1 Designs for implementation 

To create actual hardware implementations of all the 

4 algorithms a complete practical designs were 

prepared: in each one the main cipher unit was 

equipped with some basic input / output buffers 

providing means for iterative loading the plaintext and 

unloading the results. The buffers had actually  

a basic functionality of serial-to-parallel input shift 

registers and parallel-to-serial output ones and were 

necessary because number of input and output bits of 

the cipher units exceeded 250 available pins even in 

the selected largest FGAA-484 package. 

Nevertheless, the buffers consumed only flip-flops 

(and not any combinational resources) so they 

interfered very little with the actual cipher units which 

were, as already noted, heavily logic-oriented. 

The designs were automatically synthesized and 

implemented by Xilinx Vivado software for the 

Spartan-7 XC7S50 FGGA484-2 device [14]. The chip 

was sufficiently large to accommodate even the 

largest organizations: with 32600 LUT elements 
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available, the most sized BLAKE designs took at most 

67% of them while Keccak and AES units fit within, 

respectively, 36 and 16%. 

For the 4 ciphers and 5 architectures the 

implementation covered a set of 20 particular cases – 

and their results will be presented in the following 

points. 

4.2 Size parameters 

Parameters describing size of the implemented cases 

are presented in Table 1. As it was already pointed in 

the previous chapter the fundamental size metric is the 

use of LUT elements which is given as the first 

parameter for each architecture, followed by 

a detailed statistics of their O5/O6 usage, a number of 

occupied slices and utilization of F7 and F8 

multiplexers. For a better visualization LUT numbers 

of all designs are presented graphically in Figure 5. 

The reported sizes are – in general – in accordance 

with expectations based upon internal sizes of the 

ciphers, but some interesting variations should be 

noted. 

 

 
Figure 5. Size of the tested implementations 

expressed in number of used LUT elements. 

 

The AES has been known for problematic 

implementations in the older generations of FPGA 

chips where their smaller, 4-input LUT tables 

struggled in realizations of 8-bit substitution boxes 

this cipher uses heavily. In Spartan-7 there are no 

symptoms of these problems and the AES turns out to 

be nearly the smallest unit in all organizations, on par 

with the reduced KECCAK-f[400]. As the table proves 

this is accomplished with extensive use of F7/F8 

multiplexers – if there was a substitution box any 

larger than 8b in the algorithm the problems would 

probably return. Looking at the lowest across all 

ciphers LUT O5&O6 usage one can tell that the AES 

logic was relatively least varied and the offered 

LUT/F7/F8 in-slice configuration handled its 

demands quite efficiently. 

BLAKE is the other cipher which uses F7/F8 

multiplexers equally intensively. Looking at raw LUT 

and slice numbers we can see that this cipher led to the 

largest implementations of all the four algorithms – a 

rather unexpected record because the 512-bit 

BLAKE’s state is approximately 3 times smaller than 

that of KECCAK-f[1600]. Further analyses of the 

combinational paths of this cipher in the next point 

will help in explanation why in this case resource 

utilization is so much above the expected numbers. 

The unrolled architectures of this cipher – the x5 and 

PPL5 cases – turned out to be the largest designs of all 

the cases, surpassing remarkably their KECCAK 

counterparts. 

 

Table 1. Implementation results: size metrics. 

 
LUTs 

LUT usage 
Slices 

MUX 

   O5        O6     O5&O6 F7 F8 

AES 

x1 1479 0,00%   91,8%     8,2% 499 144 40 

x2 2464 0,04%   95,7%     4,3% 799 384 160 

x5 5309 0,04%   95,9%     4,1% 1489 984 412 

PPL2 2594 0,04%   94,7%     5,2% 869 320 160 

PPL5 5360 0,00%   97,0%     3,0% 1503 1280 640 

 BLAKE 

x1 6048 0,00%   94,0%   06,0% 1663 620 40 

x2 9114 0,01%   86,7%  13,2% 2434 1984 992 

x5 21510 0,01%   86,7%   13,3% 5575 5120 2560 

PPL2 9485 0,03%   84,7%  15,3% 2522 1984 992 

PPL5 21736 0,01%   85,0%  15,0% 5783 5120 2560 

KECCAK-f[400] 

x1 1344 0,00%   99,1%   00,9% 364 0 0 

x2 2130 0,28%   82,8%   16,9% 616 0 0 

x5 4785 0,10%   86,3%   13,6% 1296 0 0 

PPL2 1694 0,24%   77,4%   22,4% 577 0 0 

PPL5 3231 0,12%   85,3%   14,6% 963 0 0 

KECCAK- f[1600] 

x1 4526 0,13%   86,6%   13,3% 1401 0 0 

x2 7691 0,01%   82,9%   17,1% 2183 0 0 

x4 11649 0,00%   89,0%   11,0% 3679 0 0 

PPL2 6664 0,02%   90,5%   09,5% 1891 0 0 

PPL4 10392 0,01%   83,0%   17,0% 2924 0 0 

 

Implementations of the SHA-3 core cipher, like the 

AES ones, produce very stable and predictable results 

in all architectural alternatives. The f[400] variant 

gives actually the smallest implementations of all the 

ciphers and the f[1600] is bigger but less than by a 

factor of 4 as the raw increase in state size would 

suggest. This stands in bright contrast to our previous 

evaluations of this algorithm in Spartan-3 and 

Spartan-6 devices ([10]) where implementations of 

the full-sized KECCAK were either difficult to 

complete due to routing congestion or led to oversized 

designs. New potentials of the Spartan-7 array offer 
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substantial improvements here especially when 

compared to the Spartan-6 capabilities. 

4.3 Performance parameters 

Table 2 summarizes most important performance 

characteristics of the 20 implementations. Speed 

aspect is represented in the first column by the value 

of the minimum clock period Tclk as it was estimated 

after static timing analysis of the final, fully routed 

design. The following three columns provide 

parameters of the longest combinational path in the 

design (which determined the Tclk): number of logic 

levels in total and dedicated carry logic elements 

among them, and the percentage of the propagation 

delay incurred by the logic vs. routing resources. 

The minimum clock period is also presented 

graphically in Figure 6 and one look at the graph 

reveals an interesting observations: the fastest designs 

are the both KECCAK size variants, meaning that even 

the f[1600] unit was faster (or on par in case of the 

unrolled architectures) than the AES 

implementations. While the superiority of the f[400] 

cipher was seen already in the size analysis, keeping 

it also by the larger variant is worth noting. It means 

that the 4x size increase of the f[1600] version over 

the f[400] one affected very little the length of the 

propagation tracks; instead, the increase was absorbed 

mainly in the width of the data paths. Such regular, 

almost ideal scaling of logic with an enlarged size is 

rarely seen in FPGA implementations yet is virtually 

astounding if presents itself in realizations of a very 

dense and involved cipher algorithm – the biggest one 

in our test suite. 

 

 
Figure 6. Speed of the tested implementations 

expressed as the minimum clock period Tclk  [ns]. 

 

The performance results are not so spectacular for the 

BLAKE cipher. Parameters of the longest propagation 

paths reveal the problem: this algorithm (as the only 

one of the tested set) relies on utilization of the 

dedicated carry logic resources and this impairs 

efficient use of the LUT generators up to their 

extended abilities in the new device. Because the 

BLAKE transformations are a mixture of xors, 

rotations and 32-bit additions – and the adder circuits 

being implemented with dedicated carry logic must 

remain outside the LUT tables – data paths in this 

cipher are implemented as boolean fragments 

(included in LUTs) running between adders. This 

explains very high numbers of levels of logic in this 

cipher: 49 (x1) ÷ 222 (x5) compared to 2 ÷ 13 in the 

much bigger KECCAK-f[1600]. Even if another 

consequence of this feature is exceptionally low 

routing part in the delay of the longest path (approx. 

50% vs 70 ÷ 80% in other ciphers) this positive effect 

cannot compensate multiple extra propagation costs 

induced by the very large number of elements along 

the path. 
 

Table 2. Implementation results: performance met-

rics. 

 
min Tclk 

[ns] 

Longest path: 

 
levels 

of logic 

carry 

elements 
logic  routing 

AES 

x1 5,61 6 0 19,1% 80,9% 

x2 8,79 11 0 21,6% 78,4% 

x5 19,04 24 0 20,3% 79,7% 

PPL2 4,97 5 0 21,4% 78,6% 

PPL5 5,13 6 0 22,7% 77,3% 

BLAKE 

x1 21,7 50 33 49,4% 50,6% 

x2 41,3 92 59 51,0% 49,0% 

x5 100,0 222 148 50,2% 49,8% 

PPL2 22,0 49 32 50,5% 49,5% 

PPL5 23,3 53 34 49,0% 51,0% 

KECCAK-f[400] 

x1 3,15 3 0 23,7% 76,3% 

x2 6,65 6 0 20,1% 79,9% 

x5 15,52 13 0 15,0% 85,0% 

PPL2 4,20 5 0 21,4% 78,6% 

PPL5 4,79 5 0 23,0% 77,0% 

KECCAK-f[1600] 

x1 3,90 2 0 17,3% 82,7% 

x2 7,92 6 0 17,8% 82,2% 

x4 18,32 13 0 9,9% 90,1% 

PPL2 4,17 2 0 14,5% 85,5% 

PPL4 5,80 3 0 14,9% 85,1% 

4.4 Efficiency of loop unrolling 

Scalability of the loop unrolled architectures (in our 

case: of xk and PPLk ones, k > 1) is the ability to keep 

the size and the minimum clock cycle in proportion to 

the number of rounds instantiated in hardware. As the 

previous studies have shown e.g. in [12] some 

hardware platforms may exhibit significant 
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weaknesses in this aspect, mainly due to difficulties in 

reproduction of involved and irregular internal 

organization of a round when their long cascade must 

co-exist in hardware. 

This issue will be verified using a simple comparison 

among each group of cipher implementations: taking 

the x1 design as a point of reference, its LUT size and 

Tclk period will be used to compute the estimated size 

and speed of the derived architectures and then the 

estimations will be compared against actual 

parameters. The estimations will assume ideal 

efficiency of round replication in loop unrolling: size 

in the unrolled (xk) and pipelined (PPLk) 

organizations should increase linearly with k, while 

the clock period should remain constant in the PPLk 

cases (the data propagate in each clock cycle still 

through one round) and should increase in proportion 

to k in the unrolled xk ones. 

Figure 7 presents the results of such analysis applied 

to design sizes (number of LUTs), showing the ratios 

actual_size : estimation for all the derived 

architectures in each cipher group. The lower the ratio, 

the smaller (lower number of LUT) was the actual 

implementation in comparison to what could be 

expected from the relevant x1 case. The value of 

100% is the threshold separating “better than” (ratio < 

100%) from “worse than” (ratio > 100%) the 

estimation. 
 

 

Figure 7. Deviation in % of actual sizes of the derived 

architectures from the predictions computed on the 

base of the respective x1 cases. 

 

As the chart proves, all the unrolled architectures were 

implemented with amount of LUT which was smaller 

than simple multiplication by k would indicate. The 

extreme 50% reduction is observed in PPL5 

organizations of the f[400] cipher while in most other 

cases the reduction remains around 20%. In general 

this is a situation observed already on the older 

platforms [11]-[12] but such a consistent confirmation 

of this trend across all the ciphers is worth noting. 

Even the largest KECCAK-f[1600] behaves here in the 

same manner as much smaller AES or the f[400] 

variant – without any signs of saturation or 

overloading of the FPGA array. It does makes a 

difference as compared to e.g. situation on the 

Spartan-6 platform where any unrolled 

implementations of the f[1600] cipher could not be 

even successfully completed due to routing 

congestion. 
 

 

Figure 8. Actual clock periods of the derived 

architectures as percentages of their estimations from 

the x1 case. 

 

Effects of the scaling are not so consistent in the clock 

period which shows Figure 8. Only in the smallest and 

simplest AES algorithm all the unrolled 

implementations can actually work faster than the x1 

case would suggest (actual Tclk shorter by 10% to 

30%) but in all other ciphers there are 

implementations which are slower than their 

predictions. The worst ratios are noted for the 

KECCAK ciphers but again – this is not a process 

which intensifies with increasing size of the variant 

because the 4 times bigger f[1600] cipher behavers 

actually closer to the estimations than its f[400] sibling 

in the x2, PPL2 and PPL5 implementations. 

Exceeding the estimation by 30 – 50% usually is not 

a problem and the observed stability of the results 

(also this time without any signs of saturation or 

overloading of the array) is more important. 

5. Conclusions 

The new Spartan family offer logic resources which 

are comparable in their capacity to the ones of the 

previous Spartan-6 devices but extensions in global 

array organization (positively affecting routing 

capabilities) do offer real improvements in overall 

efficiency of cipher implementations. These 

improvements are not much seen in the older AES 

algorithm which was quite efficiently handled already 

by the previous generation of Spartan-6 devices. 

Neither AES size nor complexity of its internal data 

distribution created any challenge that would call for 

new capabilities of the S7 architecture. 

The BLAKE algorithm still remains difficult in FPGA 

implementation due to its extensive use of the 32-bit 

40%

50%

60%

70%

80%

90%

100%

x2 x5

P
P

L2

P
P

L5 x2 x5

P
P

L2

P
P

L5 x2 x5

P
P

L2

P
P

L5 x2 x4

P
P

L2

P
P

L4

AES                  BLAKE             K-f[400]          K-f[1600]

60%

80%

100%

120%

140%

160%

x2 x5

P
P

L2

P
P

L5 x2 x5

P
P

L2

P
P

L5 x2 x5

P
P

L2

P
P

L5 x2 x4

P
P

L2

P
P

L4

AES                  BLAKE              K-f[400]           K-f[1600]



Journal of Polish  Safety and Reliability Association 

Summer Safety and Reliability Seminars, Volume 9, Number 3, 2018                    

 

 83 

adders which split paths of combinational propagation 

and limit the use of extended capabilities of the LUT 

elements. This factor leads to large implemented sizes 

which also on the S7 platform exceed proportions of 

the actual dimensions of this cipher based e.g. on size 

of its state words. 

It is the KECCAK compression function which benefits 

most from the new Spartan-7 potentials in this 

comparison. Despite the largest internal size, 

KECCAK-f[1600] implementations were consistently 

smaller than those of BLAKE and not as much larger 

than the AES ones as the difference in the raw data 

sizes would suggest. This high size efficiency was 

accompanied also by good performance 

characteristics: despite the size, the KECCAK 

implementations were on average faster not only than 

the BLAKE ones but also than their (much smaller) 

AES peers. 
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