
Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 9, Number 3, 2018

 75

Sugier Jarosław
Wrocław University of Science and Technology, Faculty of Electronics, Poland

Efficiency of Spartan-7 FPGA devices in implementation of contempo-

rary cryptographic algorithms

Keywords

hardware implementation, loop unrolling, pipelining, AES, BLAKE, KECCAK, SHA-3.

Abstract

Hardware implementations of cryptographic algorithms are ubiquitous in contemporary computer systems where

they are used to ensure appropriate level of security e.g. in high-speed data transmission, authentication and access

control, distributed cloud storage, etc.. In this paper we evaluate size and speed efficiency of FPGA

implementations of selected popular cryptographic algorithms in the newest cost-sensitive Spartan-7 devices form

Xilinx, Inc.. The investigated set of algorithms included four examples: the AES-128 standard symmetric block

cipher, the BLAKE-256 hash function and two size variants of the KECCAK-f[b] compression function, b = 400

and 1600, with the larger variant being used as the core of the new SHA-3 standard. The main aim of this research

was to provide a uniform and comparable implementation approach for all the ciphers so that the new potentials

of the Spartan-7 internal architecture would be put to the test in realization of their specific cryptographic

transformations and data distribution. Each of the four algorithms was implemented in five architectures: the basic

iterative one (with one instance of the cipher round instantiated in hardware) plus two loop unrolled ones (with

two and four or five rounds in hardware) and their two pipelined variants (with registers at the outputs of each

round enabling parallel processing of multiple streams of data). Uniform implementation methodology applied to

20 cases of cipher & architecture combinations created a consistent testbed, producing comparable results which

allowed to evaluate efficiency of the new hardware platform in implementation of the different algorithms in

various unrolled and pipelined organizations.

1. Introduction

Contemporary IT systems, being most often

geographically distributed complex systems exposed

to a hostile environment, must ensure appropriate

level of data security and the only way of meeting this

demand is application of suitable cryptographic

algorithms. In the recent two decades a lot of research

was devoted to developing new and more efficient

algorithms for this purpose. When high data

throughput is required their implementation in

hardware rather than software is often the only

solution and this aspect of cipher realization is taken

into account by their authors right from the start of

development. Among the hardware implementation

options the programmable devices and in particular

Field Programmable Gate Arrays (FPGA) are often

the optimal choice thanks to their flexibility, short

development cycle and low prototyping cost [6]-[7],

[9].

But contemporary ciphers are one of the most difficult

kind of designs for implementation in FPGA devices.

Their large sizes, irregular internal processing and

random data distribution resulting in chaotic yet

widely spread routing create a lot of problems for

implementation tools and stretch capabilities of the

arrays to their limits. Therefore suitability of a specific

cipher (which furthermore can be expressed in

hardware in various architectures of parallel or

sequential processing) for an FPGA implementation is

an important issue depending additionally on

particularities of the programmable device selected as

the hardware platform.

In this context the aim of the paper was to evaluate

size and speed efficiency of FPGA implementations

of selected popular cryptographic algorithms in the

newest cost-sensitive Spartan-7 devices form Xilinx,

Inc.. The investigated set of algorithms included four

examples: the AES-128 standard symmetric block

cipher, the BLAKE-256 hash function and two size

Sugier Jarosław

Efficiency of Spartan-7 FPGA devices in implementation of contemporary cryptographic algorithms

 76

variants of the KECCAK-f[b] compression function,

b = 400 and 1600, with the larger variant being used

as the core of the new SHA-3 standard. Each of these

algorithms was implemented in five architectures: the

basic iterative one (with one instance of the cipher

round instantiated in hardware) plus two loop unrolled

ones (with two and four or five rounds in hardware)

and their two pipelined variants (with registers at the

outputs of each round enabling parallel processing of

multiple streams of data). Uniform implementation

methodology applied to 20 cases of cipher &

architecture combinations created a consistent

testbed, producing comparable results which allowed

to evaluate implementation efficiency of the different

algorithms in various unrolled and pipelined

organizations on the new hardware platform which is

available commercially only form 2017.

Contents of the paper is organized as follows.

Construction of the algorithms is outlined briefly in

the second chapter in order to identify their main

characteristics which affect efficiency of FPGA

implementation. The third chapter describes the five

architectures every cipher is implemented in and

discusses organization of main Spartan-7 resources

which are fundamental in cipher realizations. The

results obtained after implementation of the 20 test

cases are the subject of the fourth chapter: after

evaluation of the main size and performance

characteristics the analysis is extended with

examination of the derived – loop unrolled and

pipelined – architectures in comparison to the basic

iterative one which allowed to assess scalability of the

loop unrolling mechanism in the different ciphers on

the new platform. Conclusions completes the text in

the last, fifth chapter.

2. The algorithms

2.1 AES

The Advanced Encryption Standard was developed in

an open competition initiated by U.S. National

Institute of Standards and Technology in order to

create a new symmetric block cipher which would

stand sufficiently strong against increasing strength of

new attacks backed up by a growing computational

power of dedicated cryptographic hardware. The

contest ended in 2001 with selecting the Rijndael

algorithm – a proposal which came from two Belgian

cryptographers: Joan Daemen and Vincent Rijmen.

In this work we will test AES-128 – the 128-bit size

version of the cipher [8]. The algorithm in general is a

substitution-permutation network which processes the

encoded chunk of data – the state – in a series of nr =

10 almost identical rounds. Each round uses its own

key which is generated from the user-supplied external

key by a separate key expansion routine. Cipher

encoding and key expansion share very similar set of

elementary transformations and constitute two 128b-

wide processing paths which needs to be executed in

parallel, hence the total data width of this algorithm in

hardware is 256b.

The state S is constructed as a 44 array of bytes and

each round apply four elementary transformations

upon it in the following order (see the right-hand part

of Figure 1):

- substitution SBox where each byte of the state is

replaced by another one according to a specific

invertible static transcoding function;

- row shifting SR where each k-th row (k = 0…3) of

the state array is rotated by k columns to the left in

encryption or to the right in decryption;

- column mixing MC operating on the whole state

columns rather than on individual bytes and

calculating its result through an involved series of

shift and xor operations (which models polynomial

multiplication modulo x4 + 1 over GF(28));

- key mixing where the round key is bitwise xor’ed

with the state vector.

The key schedule (the left-hand part of Figure 1)

works on a set of four wi words initialized with the

external key and produces the round keys with

identically defined SBox substitutions and bitwise xor

operations.

w4i

w4i+2

w4i+3

w4i+1

Ki

Si

16SBox8b

Mix Col.

R
o
u
n
d
 R

i

w4i–1
w4i–2
w4i–3
w4i–4

R
i

–
 1

32b 128b

 Key expansion Cipher

Si+1

4


S
B

o
x

8
b

b

Shift Rows

Figure 1. Internal composition of one AES round: key

expansion and cipher paths

Putting aside row shifting (which in hardware is just a

static signal re-ordering and can be accomplished

completely in routing, without absorbing any logic

resources), the main challenge in realization of this

algorithm in an FPGA array is efficient expression of

column mixing and byte substitution. Especially the

latter operation, being essentially a wide 8b to 8b

boolean function, is difficult in implementation with

LUT generators which must be combined to store 256

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 9, Number 3, 2018

 77

bytes of its truth table. In the older Spartan-3 devices

each SBox aggregated 16 LUTs plus some

multiplexing logic and this not only produced

enlarged design size but also remarkably complicated

overall routing leading consequently to long

propagation delays and low operating frequencies. It

was shown in [11] that these problems were partially

alleviated in the newer Spartan-6 family which

offered 4 times larger LUT tables.

2.2 BLAKE

Building on positive experiences of the AES contest,

in 2007 NIST started another competition aimed at

developing a new hash method which would

eventually replace the SHA-2 standard. The BLAKE

algorithm, proposed by Jean-Philippe Aumasson,

Luca Henzen, Willi Meier, and Raphael C.-W. Phan,

was selected as one of the strictest 5 finalists and,

although by the final NIST decision it ultimately lost

to KECCAK, the cipher was repeatedly acclaimed in all

stages of competition for its good cryptographic

strength and great performance, especially in

software.

In this work we are considering the BLAKE-256 size

variant which generates 256b hash output, internally

handling 32b words and 512b state. At the heart of the

method [1] there is a compression function which is

iteratively applied to 512b blocks of an arbitrarily long

input message and the FPGA implementation of this

function is the subject of our investigation.

Processing of the compression is organized around

a 512b state seen as a 44 matrix of 32b words v0…

v15. Initially the state is filled with the current chain

hash value and then it goes through a series of nr = 14

rounds with each round modifying twice all the words

by applying a G function:

 G0(v0, v4, v8, v12); G1(v1, v5, v9, v13);

 G2(v2, v6, v10, v14); G3(v3, v7, v11, v15);
(1)

and then

 G4(v0, v5, v10, v15); G5(v1, v6, v11, v12);

 G6(v2, v7, v8, v13); G7(v3, v4, v9, v14).
(2)

Each application of the Gi() function transforms a set

of four state words given as explicit parameters; as an

additional side input the message words are also

loaded although they do not appear on the argument

list. The ordinal number of the function i (0 ÷ 7)

determines which permutation element r(i), message

mi and constant ci words are used within the given Gi()

instance – but other than that each instance applies the

same processing transformations which are

graphically represented in Figure 2.

a

b

c

d

mr'(2i)

cr'(2i+1)

>>16

>>12

>>8

>>7

a'

b'

c'

d'

mr'(2i+1)

cr'(2i)

32b

Figure 2. Operations of the G function – one eighth of

the BLAKE round.

The operations – which are the key elements in

the hardware implementation – are:

 - bitwise xor of two 32b vectors,

+ - addition mod 232 of two vectors (i.e. regular 32b

addition with carry out ignored),

>> - right rotation of a vector by a constant number of

positions.

Again, any rotation of a vector by a constant number

of positions is a null-operator in hardware so the

repertoire of BLAKE elementary operators is

extremely simple: it includes only 32 adders and xor

gates. This would be an ideal situation for

optimization algorithms applied during the

implementation process (a cascade of simple

operators would be aggregated in large sized LUT

generators) but such an optimization cannot deal

efficiently with adders: in FPGA cells fast addition is

accomplished with dedicated carry resources located

along the LUT elements so the in-LUT aggregation

must stop in the points where an addition appears on

the data path.

2.3 KECCAK-f[400] and f[1600]

The KECCAK algorithm ([3]) was proposed for the

SHA-3 contest by Guido Bertoni, Joan Daemen (co-

author of AES), Michaël Peeters and Gilles Van

Assche. The proposal included actually a set of 7 size

variants of the method from which the largest one –

with 1600b state – in 2015 was selected for the new

SHA-3 standard.

In this work we will analyse hardware

implementations of the KECCAK-f[b] permutation

function which is at the core of the so called sponge

construction [2] and calculates actual hash values of

the input message. With its size parametrized by l

which can take any integer value from 0 to 6, the

function operate on a state of b = 25 × w bits (w = 2l,

b = 25, 50, 100, 200, 400 800, and 1600) where

a single word w (1, 2, 4, …32b) is called a lane. Any

specific-size variant of the function computes its

result by processing the state in a series of nr = 12 +

2l rounds (12, 14, 16, 18, 20, 22, or 24). The rounds

Sugier Jarosław

Efficiency of Spartan-7 FPGA devices in implementation of contemporary cryptographic algorithms

 78

are internally identical but they apply different w-bit

constants in their final transformation. For the tests in

this paper we have selected implementations of two

size variants: a 20-round KECCAK-f[400] with the

datapath width comparable to AES and the full-size,

24-round KECCAK-f[1600] which is used in the SHA-

3 standard.

Figure 3. Ideas of bit transformations inside

a KECCAK round as presented by the authors in [3].

Both variants (as well as the 5 remaining ones) share

the same parametrized definition. The specification

describes one KECCAK round as a sequence of 5

transformations of the state A which is represented as

a 3-dimensional array A[5][5][w]. Each

transformation is defined as a set of elementary

operations on individual bits of the 25 lanes. Although

the operations are as simple as xor or fixed rotations,

their arguments are scattered pseudo-randomly all

over the lanes so that it is virtually impossible to

determine any regular datapaths inside the round in

a manner similar to Figures 1 and 2. Of the three

ciphers considered in this comparison KECCAK’S

operations, although can be algebraically described in

a concise way, are the most fine-grained ones. Figure

3 presents only their basic ideas – yet not the round’s

complete processing which results from their

superposition.

3. Implementing the ciphers in hardware

3.1 Architectures of cipher modules

Any round-based cipher can be efficiently

implemented in software in an iterative manner:

operations of a single round are expressed in the code

once and then applied to the state variables repeatedly

nr times in a loop. Depending on the in-round data

dependencies, round processing can sometimes be

parallelized and split into multiple concurrent threads

of execution. Such a generic iterative idea can be

mapped into hardware (either ASIC or FPGA) in

different ways [4]. Overall, the two extreme

approaches would be as follows: the loop of the cipher

can be completely unrolled with all the rounds

replicated as a cascade of nr hardware modules, or the

loop is not unrolled at all with just one round module

implemented in hardware and its operation on state

signals is repeated nr times (that is, in nr clock cycles)

in a manner resembling iterating in software. Between

these extremes, as a mid-range solution the loop can

be unrolled in part: one fourth, for example, of the

rounds can be reproduced in hardware and the state

signals would be passed through them four times.

Another technique – called pipelining – well known

in hardware organisation can be applied if there is

a cascade of modules creating a long path of data

propagation in the design: if registers are added at the

end of each round, different sets of data can be

processed simultaneously in each of the modules

during the same clock cycle which introduces

parallelism and increases greatly total throughput of

the data stream being processed. Such an approach is

usually very effective in cipher organizations because

almost every unrolled implementation is naturally

a very good candidate for pipelining.

Notations for these cases will be adopted after

universal taxonomy presented e.g. in [5]: an

architecture with k unrolled rounds will be denoted as

xk (including the basic iterative – x1) and their

pipelined counterparts – as PPLk.

In this study we followed the approach of our previous

comparisons and, focusing on high speed

architectures, each cipher was tested in

5 architectures:

 the basic iterative one - x1,

 the two loop unrolled ones - x2 and x5,

 their two pipelined variants - PPL2 and PPL5.

Only in the case of the largest, 24-round KECCAK-

f[1600] algorithm as the longest unrolled architectures

the x4/PPL4 organizations were taken instead of

x5/PP5 – in order to keep integer divisions of the nr

parameter.

We should also note that the x1 organization of each

cipher, being its smallest and thus easiest to

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 9, Number 3, 2018

 79

implement, will serve also as a point of reference in

evaluation of the derived, larger constructions.

3.2 Resources of the Spartan-7 devices

Introduced commercially in 2017, Spartan-7 family is

a relatively new addition to the latest, most advanced

and most sophisticated 7th generation of

programmable devices offered by Xilinx, Inc. – the

inventor and still one of the most accomplished

producers of the Field Programmable Gate Arrays.

Fabricated in 28 nm HPL process the S7 chips can

efficiently combine high performance with low cost

and small form-factor packaging. In the internal

organization special care was paid to enhancements in

routing capabilities which often limit the effective

capacity of the array in real applications: their

organization is based on the Advanced Silicon

Modular Block (ASMBL) architecture and helps in

removing bottlenecks which arise as a result of

geometric layout constrains or global signals routing.

Every node of the S7 array – a configurable logic

block – consists of two slices and Figure 4 presents

essential resources found in each of them [13]. For

implementations of any cipher the most important are

those used for realization of boolean logic because the

combinational functions usually constitute the core of

the cryptographic processing. In S7 the boolean

functions are generated by 6-input Look Up Tables

(LUT) with each individual LUT, being essentially a

64-bit PROM memory, is capable of representing on

its O6 output any function of up to 6 variables.

Additionally, since the 6-input functions are relatively

wide and sometimes larger number of smaller ones

are needed in the design, each LUT can be configured

to compute two functions of 5 variables (holding two

32-bit tables): in this case the second function is

available on the optional O5 output but such a

configuration is only possible if the two functions

share the same 5 input signals. LUT usage statistics

which is generated after implementation provides

number of elements in the design with only the O6

output used (generation of one maximum sized, 6-

input function), with both O5 and O6 used (generation

of two 5-input functions) or only O5 (generation of

a 5 or less input function).

Every LUT output can be optionally stored in a flip-

flop. As usual in any FPGA array, S7 resources offer

an abundance of flip-flops so creating e.g. the pipeline

registers is not a problem. Therefore in the evaluations

of this work we will not pay too much of an attention

to the register usage because they are a secondary

resource, insignificant in evaluation of cipher sizes

even in the pipelined architectures.

The figure also shows availability of F7 & F8

multiplexers which are used for joining LUT outputs

when creating functions of more than 6 variables.

Each of the two pairs of LUTs inside the slice (A&B

and C&D) can generate any 7-input function on the

output of its F7 mux giving two independent functions

per slice. Similarly, to implement an arbitrary 8-bit

function its 256-bit truth table can be stored in the 4

LUTs so that the function value propagates through

a F7 mux to the output of the F8 mux. Thus all the

logic of a slice suffices for representation of one 8-bit

function – and it is worth noting that in the previous

generations of devices with 4-input LUT elements

synthesis of such a function was not possible within a

slice, required inter-CLB signal routing and thus led

to much worse performance parameters.

D(6:1)

LUT

O6

O5

C(6:1)

LUT

O6

O5

B(6:1)

LUT

O6

O5

A(6:1)

LUT

O6

O5

F7

F7

F8

Figure 4. Resources inside one Spartan-7 slice.

4. Implementation results

4.1 Designs for implementation

To create actual hardware implementations of all the

4 algorithms a complete practical designs were

prepared: in each one the main cipher unit was

equipped with some basic input / output buffers

providing means for iterative loading the plaintext and

unloading the results. The buffers had actually

a basic functionality of serial-to-parallel input shift

registers and parallel-to-serial output ones and were

necessary because number of input and output bits of

the cipher units exceeded 250 available pins even in

the selected largest FGAA-484 package.

Nevertheless, the buffers consumed only flip-flops

(and not any combinational resources) so they

interfered very little with the actual cipher units which

were, as already noted, heavily logic-oriented.

The designs were automatically synthesized and

implemented by Xilinx Vivado software for the

Spartan-7 XC7S50 FGGA484-2 device [14]. The chip

was sufficiently large to accommodate even the

largest organizations: with 32600 LUT elements

Sugier Jarosław

Efficiency of Spartan-7 FPGA devices in implementation of contemporary cryptographic algorithms

 80

available, the most sized BLAKE designs took at most

67% of them while Keccak and AES units fit within,

respectively, 36 and 16%.

For the 4 ciphers and 5 architectures the

implementation covered a set of 20 particular cases –

and their results will be presented in the following

points.

4.2 Size parameters

Parameters describing size of the implemented cases

are presented in Table 1. As it was already pointed in

the previous chapter the fundamental size metric is the

use of LUT elements which is given as the first

parameter for each architecture, followed by

a detailed statistics of their O5/O6 usage, a number of

occupied slices and utilization of F7 and F8

multiplexers. For a better visualization LUT numbers

of all designs are presented graphically in Figure 5.

The reported sizes are – in general – in accordance

with expectations based upon internal sizes of the

ciphers, but some interesting variations should be

noted.

Figure 5. Size of the tested implementations

expressed in number of used LUT elements.

The AES has been known for problematic

implementations in the older generations of FPGA

chips where their smaller, 4-input LUT tables

struggled in realizations of 8-bit substitution boxes

this cipher uses heavily. In Spartan-7 there are no

symptoms of these problems and the AES turns out to

be nearly the smallest unit in all organizations, on par

with the reduced KECCAK-f[400]. As the table proves

this is accomplished with extensive use of F7/F8

multiplexers – if there was a substitution box any

larger than 8b in the algorithm the problems would

probably return. Looking at the lowest across all

ciphers LUT O5&O6 usage one can tell that the AES

logic was relatively least varied and the offered

LUT/F7/F8 in-slice configuration handled its

demands quite efficiently.

BLAKE is the other cipher which uses F7/F8

multiplexers equally intensively. Looking at raw LUT

and slice numbers we can see that this cipher led to the

largest implementations of all the four algorithms – a

rather unexpected record because the 512-bit

BLAKE’s state is approximately 3 times smaller than

that of KECCAK-f[1600]. Further analyses of the

combinational paths of this cipher in the next point

will help in explanation why in this case resource

utilization is so much above the expected numbers.

The unrolled architectures of this cipher – the x5 and

PPL5 cases – turned out to be the largest designs of all

the cases, surpassing remarkably their KECCAK

counterparts.

Table 1. Implementation results: size metrics.

LUTs

LUT usage
Slices

MUX

 O5 O6 O5&O6 F7 F8

AES

x1 1479 0,00% 91,8% 8,2% 499 144 40

x2 2464 0,04% 95,7% 4,3% 799 384 160

x5 5309 0,04% 95,9% 4,1% 1489 984 412

PPL2 2594 0,04% 94,7% 5,2% 869 320 160

PPL5 5360 0,00% 97,0% 3,0% 1503 1280 640

 BLAKE

x1 6048 0,00% 94,0% 06,0% 1663 620 40

x2 9114 0,01% 86,7% 13,2% 2434 1984 992

x5 21510 0,01% 86,7% 13,3% 5575 5120 2560

PPL2 9485 0,03% 84,7% 15,3% 2522 1984 992

PPL5 21736 0,01% 85,0% 15,0% 5783 5120 2560

KECCAK-f[400]

x1 1344 0,00% 99,1% 00,9% 364 0 0

x2 2130 0,28% 82,8% 16,9% 616 0 0

x5 4785 0,10% 86,3% 13,6% 1296 0 0

PPL2 1694 0,24% 77,4% 22,4% 577 0 0

PPL5 3231 0,12% 85,3% 14,6% 963 0 0

KECCAK- f[1600]

x1 4526 0,13% 86,6% 13,3% 1401 0 0

x2 7691 0,01% 82,9% 17,1% 2183 0 0

x4 11649 0,00% 89,0% 11,0% 3679 0 0

PPL2 6664 0,02% 90,5% 09,5% 1891 0 0

PPL4 10392 0,01% 83,0% 17,0% 2924 0 0

Implementations of the SHA-3 core cipher, like the

AES ones, produce very stable and predictable results

in all architectural alternatives. The f[400] variant

gives actually the smallest implementations of all the

ciphers and the f[1600] is bigger but less than by a

factor of 4 as the raw increase in state size would

suggest. This stands in bright contrast to our previous

evaluations of this algorithm in Spartan-3 and

Spartan-6 devices ([10]) where implementations of

the full-sized KECCAK were either difficult to

complete due to routing congestion or led to oversized

designs. New potentials of the Spartan-7 array offer

0

5 000

10 000

15 000

20 000

25 000

x1 x2 x5
P

P
L2

P
P

L5 x1 x2 x5
P

P
L2

P
P

L5 x1 x2 x5
P

P
L2

P
P

L5 x1 x2 x4
P

P
L2

P
P

L4

AES BLAKE K-f[400] K-f[1600]

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 9, Number 3, 2018

 81

substantial improvements here especially when

compared to the Spartan-6 capabilities.

4.3 Performance parameters

Table 2 summarizes most important performance

characteristics of the 20 implementations. Speed

aspect is represented in the first column by the value

of the minimum clock period Tclk as it was estimated

after static timing analysis of the final, fully routed

design. The following three columns provide

parameters of the longest combinational path in the

design (which determined the Tclk): number of logic

levels in total and dedicated carry logic elements

among them, and the percentage of the propagation

delay incurred by the logic vs. routing resources.

The minimum clock period is also presented

graphically in Figure 6 and one look at the graph

reveals an interesting observations: the fastest designs

are the both KECCAK size variants, meaning that even

the f[1600] unit was faster (or on par in case of the

unrolled architectures) than the AES

implementations. While the superiority of the f[400]

cipher was seen already in the size analysis, keeping

it also by the larger variant is worth noting. It means

that the 4x size increase of the f[1600] version over

the f[400] one affected very little the length of the

propagation tracks; instead, the increase was absorbed

mainly in the width of the data paths. Such regular,

almost ideal scaling of logic with an enlarged size is

rarely seen in FPGA implementations yet is virtually

astounding if presents itself in realizations of a very

dense and involved cipher algorithm – the biggest one

in our test suite.

Figure 6. Speed of the tested implementations

expressed as the minimum clock period Tclk [ns].

The performance results are not so spectacular for the

BLAKE cipher. Parameters of the longest propagation

paths reveal the problem: this algorithm (as the only

one of the tested set) relies on utilization of the

dedicated carry logic resources and this impairs

efficient use of the LUT generators up to their

extended abilities in the new device. Because the

BLAKE transformations are a mixture of xors,

rotations and 32-bit additions – and the adder circuits

being implemented with dedicated carry logic must

remain outside the LUT tables – data paths in this

cipher are implemented as boolean fragments

(included in LUTs) running between adders. This

explains very high numbers of levels of logic in this

cipher: 49 (x1) ÷ 222 (x5) compared to 2 ÷ 13 in the

much bigger KECCAK-f[1600]. Even if another

consequence of this feature is exceptionally low

routing part in the delay of the longest path (approx.

50% vs 70 ÷ 80% in other ciphers) this positive effect

cannot compensate multiple extra propagation costs

induced by the very large number of elements along

the path.

Table 2. Implementation results: performance met-

rics.

min Tclk

[ns]

Longest path:

levels

of logic

carry

elements
logic routing

AES

x1 5,61 6 0 19,1% 80,9%

x2 8,79 11 0 21,6% 78,4%

x5 19,04 24 0 20,3% 79,7%

PPL2 4,97 5 0 21,4% 78,6%

PPL5 5,13 6 0 22,7% 77,3%

BLAKE

x1 21,7 50 33 49,4% 50,6%

x2 41,3 92 59 51,0% 49,0%

x5 100,0 222 148 50,2% 49,8%

PPL2 22,0 49 32 50,5% 49,5%

PPL5 23,3 53 34 49,0% 51,0%

KECCAK-f[400]

x1 3,15 3 0 23,7% 76,3%

x2 6,65 6 0 20,1% 79,9%

x5 15,52 13 0 15,0% 85,0%

PPL2 4,20 5 0 21,4% 78,6%

PPL5 4,79 5 0 23,0% 77,0%

KECCAK-f[1600]

x1 3,90 2 0 17,3% 82,7%

x2 7,92 6 0 17,8% 82,2%

x4 18,32 13 0 9,9% 90,1%

PPL2 4,17 2 0 14,5% 85,5%

PPL4 5,80 3 0 14,9% 85,1%

4.4 Efficiency of loop unrolling

Scalability of the loop unrolled architectures (in our

case: of xk and PPLk ones, k > 1) is the ability to keep

the size and the minimum clock cycle in proportion to

the number of rounds instantiated in hardware. As the

previous studies have shown e.g. in [12] some

hardware platforms may exhibit significant

0

20

40

60

80

100

120

x1 x2 x5
P

P
L2

P
P

L5 x1 x2 x5
P

P
L2

P
P

L5 x1 x2 x5
P

P
L2

P
P

L5 x1 x2 x4
P

P
L2

P
P

L4

AES BLAKE K-f[400] K-f[1600]

Sugier Jarosław

Efficiency of Spartan-7 FPGA devices in implementation of contemporary cryptographic algorithms

 82

weaknesses in this aspect, mainly due to difficulties in

reproduction of involved and irregular internal

organization of a round when their long cascade must

co-exist in hardware.

This issue will be verified using a simple comparison

among each group of cipher implementations: taking

the x1 design as a point of reference, its LUT size and

Tclk period will be used to compute the estimated size

and speed of the derived architectures and then the

estimations will be compared against actual

parameters. The estimations will assume ideal

efficiency of round replication in loop unrolling: size

in the unrolled (xk) and pipelined (PPLk)

organizations should increase linearly with k, while

the clock period should remain constant in the PPLk

cases (the data propagate in each clock cycle still

through one round) and should increase in proportion

to k in the unrolled xk ones.

Figure 7 presents the results of such analysis applied

to design sizes (number of LUTs), showing the ratios

actual_size : estimation for all the derived

architectures in each cipher group. The lower the ratio,

the smaller (lower number of LUT) was the actual

implementation in comparison to what could be

expected from the relevant x1 case. The value of

100% is the threshold separating “better than” (ratio <

100%) from “worse than” (ratio > 100%) the

estimation.

Figure 7. Deviation in % of actual sizes of the derived

architectures from the predictions computed on the

base of the respective x1 cases.

As the chart proves, all the unrolled architectures were

implemented with amount of LUT which was smaller

than simple multiplication by k would indicate. The

extreme 50% reduction is observed in PPL5

organizations of the f[400] cipher while in most other

cases the reduction remains around 20%. In general

this is a situation observed already on the older

platforms [11]-[12] but such a consistent confirmation

of this trend across all the ciphers is worth noting.

Even the largest KECCAK-f[1600] behaves here in the

same manner as much smaller AES or the f[400]

variant – without any signs of saturation or

overloading of the FPGA array. It does makes a

difference as compared to e.g. situation on the

Spartan-6 platform where any unrolled

implementations of the f[1600] cipher could not be

even successfully completed due to routing

congestion.

Figure 8. Actual clock periods of the derived

architectures as percentages of their estimations from

the x1 case.

Effects of the scaling are not so consistent in the clock

period which shows Figure 8. Only in the smallest and

simplest AES algorithm all the unrolled

implementations can actually work faster than the x1

case would suggest (actual Tclk shorter by 10% to

30%) but in all other ciphers there are

implementations which are slower than their

predictions. The worst ratios are noted for the

KECCAK ciphers but again – this is not a process

which intensifies with increasing size of the variant

because the 4 times bigger f[1600] cipher behavers

actually closer to the estimations than its f[400] sibling

in the x2, PPL2 and PPL5 implementations.

Exceeding the estimation by 30 – 50% usually is not

a problem and the observed stability of the results

(also this time without any signs of saturation or

overloading of the array) is more important.

5. Conclusions

The new Spartan family offer logic resources which

are comparable in their capacity to the ones of the

previous Spartan-6 devices but extensions in global

array organization (positively affecting routing

capabilities) do offer real improvements in overall

efficiency of cipher implementations. These

improvements are not much seen in the older AES

algorithm which was quite efficiently handled already

by the previous generation of Spartan-6 devices.

Neither AES size nor complexity of its internal data

distribution created any challenge that would call for

new capabilities of the S7 architecture.

The BLAKE algorithm still remains difficult in FPGA

implementation due to its extensive use of the 32-bit

40%

50%

60%

70%

80%

90%

100%

x2 x5

P
P

L2

P
P

L5 x2 x5

P
P

L2

P
P

L5 x2 x5

P
P

L2

P
P

L5 x2 x4

P
P

L2

P
P

L4

AES BLAKE K-f[400] K-f[1600]

60%

80%

100%

120%

140%

160%

x2 x5

P
P

L2

P
P

L5 x2 x5

P
P

L2

P
P

L5 x2 x5

P
P

L2

P
P

L5 x2 x4

P
P

L2

P
P

L4

AES BLAKE K-f[400] K-f[1600]

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 9, Number 3, 2018

 83

adders which split paths of combinational propagation

and limit the use of extended capabilities of the LUT

elements. This factor leads to large implemented sizes

which also on the S7 platform exceed proportions of

the actual dimensions of this cipher based e.g. on size

of its state words.

It is the KECCAK compression function which benefits

most from the new Spartan-7 potentials in this

comparison. Despite the largest internal size,

KECCAK-f[1600] implementations were consistently

smaller than those of BLAKE and not as much larger

than the AES ones as the difference in the raw data

sizes would suggest. This high size efficiency was

accompanied also by good performance

characteristics: despite the size, the KECCAK

implementations were on average faster not only than

the BLAKE ones but also than their (much smaller)

AES peers.

References
[1] Aumasson, J.-P., Henzen, L., Meier, W. & Phan,

R.C.-W. (2010). SHA-3 proposal BLAKE,

version 1.3. https://www.131002.net/blake/

blake.pdf (accessed March 2018).

[2] Bertoni, G., Daemen, J., Peeters, M. & Van

Assche, G. (2011). Cryptographic sponge

functions. http://keccak.noekeon.org/ (accessed

March 2018).

[3] Bertoni, G., Daemen, J., Peeters, M. & Van

Assche, G. (2011). The Keccak reference.

http://keccak.noekeon.org/ (accessed March

2018).

[4] Gaj, K., Homsirikamol, E., Rogawski, M., Shahid,

R. & Sharif, M. U. (2012). Comprehensive

evaluation of high-speed and medium-speed

implementations of five SHA-3 finalists using

Xilinx and Altera FPGAs. The Third SHA-3

Candidate Conference, Washington, DC, USA.

[5] Gaj, K., Kaps J.P., Amirineni, V., Rogawski, M.,

Homsirikamol, E., Brewster, B.Y. (2010).

ATHENa – Automated Tool for Hardware

EvaluatioN: Toward Fair and Comprehensive

Benchmarking of Cryptographic Hardware Using

FPGAs. 20th International Conference on Field

Programmable Logic and Applications, Milano,

Italy.

[6] Junkg, B. & Apfelbeck, J. (2011). Area-efficient

FPGA implementations of the SHA-3 finalists.

2011 International Conference on Reconfigurable

Computing and FPGAs (ReConFig), IEEE, 235-

241.

[7] Liberatori, M., Otero, F., Bonadero, J.C. &

Castineira, J. (2007). AES-128 Cipher. High

Speed, Low Cost FPGA Implementation. Proc.

Third Southern Conf. on Programmable Logic.

Mar del Plata, Argentina, IEEE Comp. Soc. Press.

[8] National Institute of Standards and Technology

(2001). Specification for the ADVANCED

ENCRYPTION STANDARD (AES). Federal

Information Processing Standards Publication

197. http://csrc.nist.gov/publications/PubsFIPS

.html (accessed March 2018).

[9] Strömbergson, J. (2008). Implementation of the

Keccak hash function in FPGA devices.

http://www.strombergson.com/files/Keccak_in_

FPGAs.pdf (accessed March 2018).

[10] Sugier, J. (2014). Low cost FPGA devices in high

speed implementations of KECCAK-f hash

algorithm. Zamojski, W., Mazurkiewicz, J.,

Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.)

Proc. 9th Int. Conf. Dependability and Complex

Systems DepCoS-RELCOMEX. Springer AISC,

286, 433-441.

[11] Sugier, J. (2015). Efficiency of FPGA

architectures in implementations of AES, Salsa20

and KECCAK cryptographic algorithms. J. Polish

Safety and Reliability Association, 6(2), 117-124.

[12] Sugier, J. (2016). Implementation efficiency of

BLAKE and other contemporary hash algorithms

in popular FPGA devices. Zamojski, W.,

Mazurkiewicz, J., Sugier, J., Walkowiak, T.,

Kacprzyk, J. (eds.) Dependability Engineering and

Complex Systems. Proc. 11th Int. Conf.

Dependability and Complex Systems DepCoS-

RELCOMEX. Springer AISC, 470, 457-467.

[13] Xilinx, Inc. (2016). 7 Series FPGAs Configurable

Logic Block. www.xilinx.com, ug474.pdf

(accessed March 2018).

[14] Xilinx, Inc. (2018). 7 Series FPGAs Data Sheet:

Overview. www.xilinx.com, ds180.pdf (accessed

March 2018).

Sugier Jarosław

Efficiency of Spartan-7 FPGA devices in implementation of contemporary cryptographic algorithms

 84

