PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Harnessing the Mineral Fertilization Regimes for Bolstering Biomass Productivity and Nutritional Quality of Cowpea [Vigna unguiculata (L.) Walp]

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To prevent environmental pollution, promote ecological restoration and impart production sustainability in biomass crops, optimization of mineral fertilization regimes is strategically required under changing climatic scenarios. There exist research gaps regarding optimal use of nitrogen (N), phosphorous (P) and potassium (K) fertilizers for the fertilizer-responsive cultivars of forage legumes like cowpea under decreasing soil fertility in semi-arid regions. Therefore, a multi-year field experiment was executed to study yield attributes, green and dry matter yields along with nutritional quality attributes of forage cowpea. The treatments were comprised of different N-P-K levels viz. F0=(0-0-0), F1=(150-0-0 kg·ha-1), F2=(150-100-0 kg·ha-1) and F3=(150-100-100 kg·ha-1). The findings revealed that F3 fertilization regime surpassed rest of treatments by recording the maximum plant population, plant height, leaf area index, plants fresh and dry weights, which led to the highest green forage yield (73% and 5.8% higher than control and following treatment of F2, respectively). For dry matter yield, all fertilization regimes performed better than control, however those were statistically at par to each other. Moreover, F3 treatment exhibited 4.4% and 1.6% higher crude protein and ether extractable fat respectively, compared to the following treatment of F2 treatment that remained at par with F3 for total ash content. Contrastingly, the control treatment remained superior by giving the minimum crude fiber content which could be attributed to dwarf plants produced in the absence of fertilizers because stem length tends to contribute the major portion of f iber content in cowpea. Thus, 150-100-100 kg·ha-1 N-P-K might be recommended to cowpea growers for boosting biomass productivity and nutritional quality, however further field investigations need to assess the impact of these fertilization regimes on biological N fixation process and solar radiation capture by cowpea plants under irrigated and dry semi-arid conditions.
Rocznik
Strony
340--351
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
autor
  • Department of Agronomy, Faculty of Agriculture, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
  • Department of Agronomy, Faculty of Agriculture, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
  • Faculty of Science Yanbu, Taibah University, Yanbu El Bahr 46423, Saudi Arabia
  • Department of Plant Production, Faculty of Agriculture, Mutah University, Karak, Jordan
autor
  • Department of Soil and Environmental Sciences, Faculty of Agriculture, University of Poonch Rawalakot, Rawalakot 12750, Pakistan
  • Department of Chemical Engineering, Louisiana Tech University, Ruston LA 71270, USA
  • Department of Field Crops, Faculty of Agriculture and Natural Sciences, Bilecik Seyh Edebali University, Turkey
  • Department of Chemical Engineering, Louisiana Tech University, Ruston LA 71270, USA
Bibliografia
  • 1. Abbas R.N., Iqbal A., Iqbal M.A., Ali O.M., Ahmed R., Ijaz, R., Hadifa A., Bethune B.J. 2021. Weedfree durations and fertilization regimes boost nutrient uptake and paddy yield of direct-seeded fine rice (Oryza sativa L.). Agronomy, 11, 2448. https,//doi.org/10.3390/agronomy11122448
  • 2. Aguerre M.J., Peña O.M., Velasquez C., Ferreira G. 2023. Nutritional composition and in vitro ruminal digestibility of crabgrass (Digitaria sanguinalis (L.) Scop.) in monoculture or interseeded with cowpea (Vigna unguiculata (L.) Walp) and lablab (Lablab purpureus (L.) Sweet). Animals, 13(14), 2305. https,//doi.org/10.3390/ani13142305
  • 3. Ahlawat I.P.S. Saraf C.S. 2009. Response of pigeon pea (Cajanus cajan (L.) Millsp.) to plant density and phosphorous fertilizer under dryland conditions. Journal of Agricultural Science, 97, 119–124.
  • 4. Akdeniz H., Hosaflioğlu I., Koç A., Hossain A., Islam M.S., Iqbal M.A., Imtiaz H., Gharib H., El Sabagh A. 2019. Evaluation of herbage yield and nutritive value of eight forage crop species. Applied Ecology and Environmental Research, 17(3), 5571–5581.
  • 5. Al-Furtuse A.K., Aldoghachi K.A., Jabail, W.A. 2019. Response of Three Varieties of Cowpea (Vigna sinensis L.) to Different levels of potassium fertilizer under southern region conditions of Iraq. Basrah Journal of Agricultural Sciences, 32, 25–34. https,//doi.org/10.37077/25200860.2019.254
  • 6. Ali S., Fatima A., Bukhari Q.A., Iqbal M.A., Rana M.A., Afzaal S. 2019. Effect of nitrogen fertilization on polyphenols in Trachyspermum ammi and Foeniculum vulgare under various lights interception. Z Arznei-Gewurzpfla, 23(2), 67–71.
  • 7. AOAC. 1990. Official methods of analysis. Association of Official Agricultural chemists.15th Ed. Arlington, Virginia, USA.
  • 8. Ben Abdallah S., Gallego-Elvira B., Popa D.C., Maestre-Valero J.F. Imbernón-Mulero A., Popa R.A., Bălănescu M. 2024. Environmental performance of a mixed crop–dairy cattle farm in Alexandria (Romania). Agriculture, 14, 462. https,//doi.org/10.3390/agriculture14030462
  • 9. Boddey R.M., Fosu M., Atakora W.K., Miranda C.H., Boddey L.H., Guimaraes A.P., Ahiabor B.D. 2017. Cowpea (Vigna unguiculata) crops in Africa can respond to inoculation with rhizobium. Experimental Agriculture, 53, 578–587.
  • 10. Bongo A., Pietr S. 2019. Biodiversity of nitrogen f ixing indigenous Rhizobia nodulating common bean (Phaseolus vulgaris L.), cowpea (Vigna unguiculata (L.) Walp.), soybean (Glycine max L. Merry), And Others Pulses Isolated from Sub-Saharan Africa soils. A review. Electron. J. Pol. Agric. University, 22, 3–14.
  • 11. Dekhane S.S., Khafi H.R., Raj A.D., Parmar R.M. 2011. Effect of biofertilizer and fertility levels on yield, protein content and nutrient uptake of cowpea [Vigna unguiculata (L.) WALP.]. Legume Research, 34, 51–54.
  • 12. Dimande P., Arrobas M., Rodrigues M.Â. 2024. Intercropped Maize and Cowpea Increased the Land Equivalent Ratio and Enhanced Crop Access to More Nitrogen and Phosphorus Compared to Cultivation as Sole Crops. Sustainability, 16(4), 1440. https,//doi.org/10.3390/su16041440
  • 13. Emmanuel O.C., Akintola O.A., Tetteh F.M., Babalola O.O. 2021. Combined application of inoculant, phosphorus and potassium enhances cowpea yield in Savanna soils. Agronomy, 11(1), 15. https,//doi.org/10.3390/agronomy11010015
  • 14. Galindo F.S., Pagliari P.H., da Silva E.C., Silva V.M., Fernandes G.C., Rodrigues W.L., Céu E.G.O, de Lima B.H., Jalal A., Muraoka T. 2022. Co-Inoculation with Azospirillum brasilense and Bradyrhizobium sp. enhances nitrogen uptake and yield in field-grown cowpea and did not change Nfertilizer recovery. Plants, 11(14), 1847. https,//doi.org/10.3390/plants11141847
  • 15. Hill S.L., David A. Verbree, Gary E. Bates, David M. Butler. 2017. Cultivar and phosphorus amendment impacts on organically managed forage cowpea yield and composition. Agronomy Journal, 109(4), 1623–1631
  • 16. Horn L.N., Shimelis H. 2020. Production constraints and breeding approaches for cowpea improvement for drought prone agro-ecologies in Sub-Saharan Africa. Annals of Agricultural Science, 65, 83–91.
  • 17. Hosafioğlu I., Akdeniz H., Turan N., Seydoşoğlu S., Iqbal, M.A., Sabagh A.E. 2024. Growth, herbage yield and quality evaluation of turfgrasses species under agro-ecological conditions of Iğdir, Turkey. Pakistan Journal of Botany, 56(3), http://dx.doi.org/10.30848/PJB2024-3(14)
  • 18. Hussin S.H., Liu X., Li C., Diaby M., Jatoi G.H., Ahmed R., Imran M., Iqbal M.A. 2022. An updated overview on insights into sugarcane genome editing via CRISPR/Cas9 for sustainable production. Sustainability, 14, 12285. https://doi.org/10.3390/su141912285
  • 19. Iqbal S., Iqbal M.A., Li C., Iqbal A., Abbas R.N. 2023. Overviewing drought and heat stress amelioration- From plant responses to microbe-mediated mitigation. Sustainability, 15, 1671. https://doi.org/10.3390/su15021671
  • 20. Iqbal M.A., Iqbal A., Ahmad Z., Raza A., Rahim J., Imran M. 2021. Cowpea [Vigna unguiculata (L.) Walp] herbage yield and nutritional quality in cowpea-sorghum mixed strip intercropping systems. Revista Mexicana De Ciencias Pecurias, 12(2), 402–418. https://doi.org/10.22319/rmcp.v12i2.4918
  • 21. Iqbal M.A. 2019. Nano-Fertilizers for Sustainable Crop Production under Changing Climate: A Global Perspective. In M. Hasanuzzaman, M.C.M.T. Filho, M. Fujita, & T.A.R. Nogueira (Eds.), Sustainable Crop Production. IntechOpen, London, UK. https://doi.org/10.5772/intechopen.89089
  • 22. Iqbal M.A., Ahmed A., Imran M., Ahmed H.E., Hafez R.M., Hamad A.A. 2022. Genetic divergence and spatial configuration influence the weed spectrum, herbage yield and nutritive quality of temperate cowpea. Agronomy, 12, 1323. https,//doi.org/10.3390/agronomy12061323
  • 23. Iqbal M.A., Hamid A., Ahmad A., Hussain I., Ali S., Ali A., Ahmad Z. 2019. Forage sorghum-legumes intercropping, Effect on growth, yields, nutritional quality and economic returns. Bragantia, 78(1), 82–95.
  • 24. Iqbal M.A., Iqbal A., Ahmad Z., Raza A., Rahim J., Imran M., Sheikh U.A.A., Maqsood Q., Soufan W., Sahloul N.M.A., Sorour S., El Sabagh A. Cowpea. [Vigna unguiculata (L.) Walp] herbage yield and nutritional quality in cowpea-sorghum mixed strip intercropping systems. Revista Mexicana De Ciencias Pecurias, 12(2), 402–418. https,//doi.org/10.22319/ rmcp.v12i2.4918
  • 25. Iqbal M.A., Siddiqui M.H., Afzal S., Ahmad Z., Maqsood Q., Khan R.D. 2018. Forage productivity of cowpea [Vigna unguiculata (L.) Walp] cultivars improves by optimization of spatial arrangements. Revista Mexicana De Ciencias Pecuarias, 9(2), 203–219.
  • 26. Iqbal M.A., Iqbal A., Ayub M., Akhtar J. 2016. Comparative study on temporal and spatial complementarity and profitability of forage sorghumsoybean intercropping systems. Custos e Agronegocio, 12(4), 2–18.
  • 27. Islam N., Zamir M.S.I., Din S.M.U., Garooq U., Arshad H., Bilal A., Sajjad M.T. 2018. Evaluating the intercropping of millet with cowpea for forage yield and quality. American Journal of Plant Science, 9, 1781–1793.
  • 28. Islam M.S., Hasan M.K., Islam M.R., Chowdhury M.K., Pramanik M.H., Iqbal M.A. et al. 2023. Water relations and yield characteristics of mungbean as influenced by foliar application of gibberellic acid (GA3). Frontiers in Ecology and Evolution, 11, 1048768. https://doi.org/10.3389/fevo.2023.1048768
  • 29. Karikari B., Arkorful E., Addy S. 2015. Growth, nodulation and yield response of cowpea to phosphorus fertilizer application in Ghana. Journal of Agronomy, 14, 234–240.
  • 30. Kizilgeci F., Yildirim M., Islam M.S., Ratnasekera D., Iqbal M.A., Sabagh A.E. 2021. Normalized difference vegetation index and chlorophyll content for precision nitrogen management in durum wheat cultivars under semi-arid conditions. Sustainability, 13, 3725. https,//doi.org/10.3390/su13073725
  • 31. Kulkarni K.P., Tayade R., Asekova S., Song J.T., Shannon J.G., Lee J.D. 2018. Harnessing the potential of forage legumes, alfalfa, soybean, and cowpea for sustainable agriculture and global food security. Frontiers in Plant Science, 9, 1314.
  • 32. Kumar P., Singh J., Kaur G., Adunola P.M., Biswas A., Bazzer S., Kaur H., Kaur I., Kaur H., Sandhu K.S., Vemula S., Kaur B., Singh V., Tseng T.M. 202. OMICS in fodder crops, applications, challenges, and prospects. Current Issues in Molecular Biology, 44(11), 5440-5473. https,//doi.org/10.3390/cimb44110369
  • 33. Kyei-Boahen S., Savala C.E.N., Chikoye D., Abaidoo R. 2017. Growth and Yield Responses of cowpea to inoculation and phosphorus fertilization in different environments. Frontiers in Plant Science, 8, 646. https,//doi.org/10.3389/fpls.2017.00646
  • 34. Lauriault L.M., Darapuneni M.K., Martinez G.K. 2023. Pearl millet-cowpea forage mixture planting arrangement influences mixture yield and nutritive value in semiarid regions. Crops, 3(4), 266–275. https,//doi.org/10.3390/crops3040024
  • 35. Lazaridi E., Suso M.J., Ortiz-Sánchez F.J., Bebeli P.J. 2023. Investigation of Cowpea (Vigna unguiculata (L.) Walp.) – Insect Pollinator Interactions Aiming to Increase Cowpea Yield and Define New Breeding Tools. Ecologies, 4(1), 124–140. https,//doi.org/10.3390/ecologies4010010
  • 36. Li C., Iqbal M.A. 2024. Leveraging the sugarcane CRISPR/Cas9 technique for genetic improvement of non-cultivated grasses. Frontiers in Plant Science, 15, 1369416. http://dx.doi.org/10.3389/fpls.2024.1369416
  • 37. Li C., Iqbal S., Aydemir S.K., Lin X., Iqbal M.A. 2024. Invasive weeds dynamics, plant-microbe’s interactions and carbon-nitrogen cycles in SinoPakistan’s grasslands perspectives. In: Grasslands conservation and development: global perspectives. Intech Open, London, UK. http://dx.doi.org/10.5772/intechopen.114381
  • 38. Luo C., Guo Z., Xiao J., Dong K., Dong Y. 2021. Effects of applied ratio of nitrogen on the light environment in the canopy and growth, development and yield of wheat when intercropped. Frontiers in Plant Science, 12, 719850. https,//doi.org/10.3389/fpls.2021.719850
  • 39. Maman N., Dicko M., Abdou G., Kouyaté Z., Wortmann C. 2017. Pearl millet and cowpea intercrop response to applied nutrients in West Africa. Agronomy Journal, 109, 2333–2342.
  • 40. Mogale E.T., Ayisi K.K., Munjonji L., Kifle Y.G. 2023. Biological nitrogen fixation of cowpea in a no-till intercrop under contrasting rainfed agro-ecological environments. Sustainability, 15(3), 2244. https,//doi.org/10.3390/su15032244
  • 41. Musa E.M., Elsheikh E.A.E., Ahmed, I.A.M., Babiker E.E. 2011. Effect of intercropping, Bradyrhizobium inoculation and N, P fertilizers on yields, physical and chemical quality of cowpea seeds. Frontiers in Agriculture, 5, 543–557. https,//doi.org/10.1007/s11703-011-1147-6
  • 42. Ndiaye J.B., Obour A.K., Harmoney K., Diouf D., Faye A., Diamé L., Fall D., Assefa Y. 2023. Predicting nutritional quality of dual-purpose cowpea using NIRS and the impacts of crop management. Sustainability, 15(16), 12155. https,//doi.org/10.3390/su151612155
  • 43. Nyoki, D., Ndakidemi, P.A. 2014. Effects of Bradyrhizobium japonicum inoculation and supplementation with phosphorus on macronutrients uptake in Cowpea (Vigna unguiculata (L.) Walp). American Journal of Plant Science, 5, 442–451. https,//doi.org/10.4236/ajps.2014.54058
  • 44. Onduru, D., De Jager, A., Muchena, F., Gachini, G., and Gachimbi, L. 2008. Exploring potentials of rhizobium inoculation in enhancing soil fertility and agroeconomic performance of cowpeas in subsaharan Africa, a case study in semi-arid Mbeere, Eastern Kenya. American-Eurasian Journal of Sustainable Agriculture, 2, 185–197.
  • 45. Sabagh A., Islam M.S., Hossain A., Iqbal M.A., Imran M., Raza A. 2022. Prospects of beneficial microbes as a natural resource for sustainable legumes production under changing climate. Editor(s): Harikesh Bahadur Singh, Anukool Vaishnav, New and Future Developments in Microbial Biotechnology and Bioengineering, 29–56. Elsevier, https://doi.org/10.1016/B978-0-323-85577-8.00017-2
  • 46. Sadiq M., Rahim N., Iqbal M.A., Alqahtani M.D., Tahir M.M., Majeed A., Ahmed R. 2023. Rhizobia inoculation supplemented with nitrogen fertilization enhances root nodulation, productivity, and nitrogen dynamics in soil and black gram (Vigna mungo (L.) Hepper). Land, 12, 1434. https,//doi.org/10.3390/land12071434
  • 47. Samireddypalle A., Boukar O., Grings E., Fatokun C.A., Kodukula P., Devulapalli R., Okike I., Blümmel M. 2017. Cowpea and groundnut haulms fodder trading and its lessons for multidimensional cowpea improvement for mixed crop livestock systems in West Africa. Frontiers in Plant Science, 8, 30.
  • 48. Sánchez-Navarro V., Zornoza R., Faz Á., Fernández J.A. 2021. Cowpea crop response to mineral and organic fertilization in SE Spain. Processes, 9(5), 822. https,//doi.org/10.3390/pr9050822
  • 49. Sangakkara, U., Frehner, M., Nösberger, J. 2001. Influence of soil moisture and fertilizer potassium on the vegetative growth of mungbean (Vigna radiata L. Wilczek) and cowpea (Vigna unguiculata L. Walp). Journal of Agronomy and Crop Science, 186, 73–81.
  • 50. Shokoohfar S.M.A. 2015. Effect of potassium fertilizer and irrigation intervals levels on yield and yield components of cowpea (Vigna unguiculata) in Ahvaz condition. Indian Journal of Fundamental and Applied Life Sciences, 5(1), 26–32.
  • 51. Singh, A., Baoule, A., Ahmed, H., Dikko, A., Aliyu, U., Sokoto, M., Alhassan J., Musa M., Haliru B. 2011. Influence of phosphorus on the performance of cowpea (Vigna unguiculata (L) Walp.) varieties in the Sudan savanna of Nigeria. Agriculture Science, 2, 313–317. https,//doi.org/10.4236/as.2011.23042
  • 52. Togola A., Datinon B., Laouali A., Traore F., Agboton C., Ongom P.O., Ojo J.A., Pittendrigh B., Boukar O., Tamò M. 2023. Recent advances in cowpea IPM in West Africa. Frontiers in Agronomy, 5, 1220387. https,//doi.org/10.3389/fagro.2023.1220387
  • 53. Toyinbo J.O., Fatokun C., Boukar O., Fakorede M.A.B. 2021. Genetic variability and trait association under thrips (Megalurothrips sjostedti Trybom) infestation in cowpea (Vigna unguiculata [L.] Walp.). Euphytica, 217(6). https,//doi.org/10.10.1007/s10681-021-02849-1
  • 54. Watanabe Y., Itanna F., Isumi Y., Awala S.K., Fujioka Y., Tsuchia K., Iijima M. 2019. Cattle manure and intercropping effects on soil properties and growth and yield of pearl millet and cowpea in Namibia. Journal of Crop Improvement, 33, 395–409.
  • 55. Xu R., Zhao H., You Y., Wu R., Liu G., Sun Z., Bademuqiqige Zhang, Y. 2022. Effects of intercropping, nitrogen fertilization and corn plant density on yield, crude protein accumulation and ensiling characteristics of silage corn interseeded into alfalfa stand. Agriculture, 12, 357. https,//doi.org/10.3390/ agriculture12030357
  • 56. Yildirim M., Kizilgeci F., Albayrak O., Iqbal M.A., Akinci C. 2022. Grain yield and nitrogen use efficiency in spring wheat (Triticum aestivum L.) hybrids under different nitrogen fertilization regimes. Journal of Elementology, 27(3), 627–644. https,//doi.org/10.5601/jelem.2022.27.3.2241
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f19c05b-00bc-40d7-83be-b867a48a8f8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.