Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
β-FeSi2 with the addition of B4C nanoparticles was manufactured by sintering mechanically alloyed Fe and Si powders with Mn, Co, Al, P as p and n-type dopants. The consolidated samples were subsequently annealed at 1123 K for 36 ks. XRD analysis of sinters after annealing confirmed nearly full transformation from α and ε into thermoelectric β-FeSi2 phase. SEM observations of samples surface were compliant with the diffraction curves. TEM observations allowed to depict evenly distributed B4C nanoparticles thorough material, with no visible aggregates and establish grain size parameter d2 < 500 nm. All dopants contributed to lower thermal conductivity and Seebeck coefficient, with Co having strongest influence on increasing electrical conductivity in relation to reference FeSi2. Combination of the addition of Co as dopant and B4C nanoparticles as phonon scatterer resulted in dimensionless figure of merit ZT reaching 7.6 × 10-2 at 773 K for Fe0.97Co0.03Si2 compound. Comparison of the thermoelectric properties of examined sinters to the previously manufactured of the same stoichiometry but without B4C nanoparticles revealed theirs overall negative influence.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1157--1162
Opis fizyczny
Bibliogr. 32 poz., fot., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland
- Łukasiewicz Research Network, Institute of Microelectronics and Photonics, 32/46, Lotników Str., 02-668 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland
Bibliografia
- [1] S. Twaha, J. Zhu, Y. Yan, B. Li, A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement, Renewable and Sustainable Energy Reviews 65, 698-726 (2016). DOI: https://doi.org/10.1016/j.rser.2016.07.034
- [2] R.M. Ware, D.J. McNeill, Iron disilicide as a thermoelectric generator material, Proc. Inst. Electr. Eng. 111, 178 (1964). DOI: https://doi.org/10.1049/piee.1964.0029
- [3] T. Kojima, Semiconducting and Thermoelectric Properties of Sintered Iron Disilicide, Phys. Stat. Sol. (A) 111, 233-242 (1989). DOI: https://doi.org/10.1002/pssa.2211110124
- [4] M. Takeda, M. Kuramitsu, M. Yoshio, Anisotropic Seebeck coefficient in β-FeSi2 single crystal, Thin Solid Films 461, 179-181 (2004). DOI: https://doi.org/10.1016/j.tsf.2004.02.066
- [5] M. Ito, T. Tada, S. Katsuyama, Thermoelectric properties of Fe0.98Co0.02Si2 with ZrO2 and rare-earth oxide dispersion by mechanical alloying, J. Alloys Compd. 350, 296-302 (2003). DOI: https://doi.org/10.1016/S0925-8388(02)00964-7
- [6] K. Biswas, J. He, I. Blum, et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature 489, 414-418 (2012). DOI: https://doi.org/10.1038/nature11439
- [7] A. Michalski, M. Rosiński, Pulse Plasma Sintering and Applications, Adv. Sinter. Sci. Technol. 219-226 (2017).
- [8] K.F. Cai, C.W. Nan, X.M. Min, The effect of silicon addition on thermoelectric properties of a B4C ceramic, Materials Science and Engineering: B 67, 3, 1999, 102-107 (1999). ISSN 0921-5107. DOI: https://doi.org/10.1016/S0921-5107(99)00220-2
- [9] Y. Ohba, T. Shimozaki, H. Era, Thermoelectric Properties of Silicon Carbide Sintered with Addition of Boron Carbide, Carbon, and Alumina, Materials Transactions 49, 6, 1235-1241 (2008). DOI: http://dx.doi.org/10.2320/matertrans.MRA2007232
- [10] M.J. Kruszewski et al., Microstructure and Thermoelectric Properties of Bulk Cobalt Antimonide (CoSb3) Skutterudites Obtained by Pulse Plasma Sintering, J. Electron. Mater. 45, 1369-1376 (2016). DOI: https://doi.org/10.1007/s11664-015-4037-5
- [11] A. Michalski, D. Siemiaszko, Nanocrystalline cemented carbides sintered by the PPS method, Int. J. Refract. Met. Hard Mater. 25, 153 (2007). DOI: https://doi.org/10.1016/j.ijrmhm.2006.03.007
- [12] A.M. Abyzov, M.J. Kruszewski, Ł. Ciupiński, M. Mazurkiewicz, A. Michalski, K.J. Kurzydłowski, Diamond-tungsten based coating-copper composites with high thermal conductivity produced by Pulse Plasma Sintering, Mater. Des. 76, 97 (2015). DOI: https://doi.org/10.1016/j.matdes.2015.03.056
- [13] J. Grzonka, J. Kruszewski, M. Rosiński, Ł. Ciupiński, A. Michalski, K.J. Kurzydłowski, Interfacial microstructure of copper/ diamond composites fabricated via a powder metallurgical route, Mater. Charact. 99, 188 (2015). DOI: https://doi.org/10.1016/j.matchar.2014.11.032
- [14] M. Rosiński, J. Wachowicz, T. Płociński, T. Truszkowski, A. Michalski, Properties of WCCO/diamond composites produced by PPS method intended for drill bits for machining of building stones, Ceram. Trans. 243, 181 (2014). DOI: https://doi.org/10.1002/9781118771464
- [15] W. Liu, X. Yan, G. Chen, Z. Ren, Recent advances in thermoelectric nanocomposites, Nano Energy 1, 42-56 (2012). DOI: https://doi.org/10.1016/j.nanoen.2011.10.001
- [16] F. Dąbrowski, Ł. Ciupiński, J. Zdunek, J. Kruszewski, R. Zybała, A. Michalski, K.J. Kurzydłowski, Microstructure and thermoelectric properties of p and n type doped β-FeSi2 fabricated by mechanical alloying and pulse plasma sintering, Materials Today: Proceedings 8, 2, 531-539 (2019). DOI: https://doi.org/10.1016/j.matpr.2019.02.050
- [17] M. Ito, H. Nagai, S. Katsuyama, K. Majima, Thermoelectric properties of β-FeSi2 with B4C and BN dispersion by mechanical alloying, J. Mat. Science 37, 2609-2614 (2002). DOI: https://doi.org/10.1023/A:1015891811725
- [18] M. Ito, H. Nagai, T. Tanaka, S. Katsuyama, K. Majima, Thermoelectric performance of n-type and p-type β-FeSi2 prepared by pressureless sintering with Cu addition, J. Alloys Compd. 319, 303-311 (2001). DOI: https://doi.org/10.1016/S0925-8388(01)00920-3
- [19] N. Niizeki, et al., Effect of Aluminum and Copper Addition to the Thermoelectric Properties of FeSi2 Sintered in the Atmosphere, Mater. Trans. 50, 1586-1591 (2009). DOI: https://doi.org/10.2320/matertrans.E-M2009808
- [20] A. Heinrich, et al., Thermoelectric properties of β-FeSi2 single crystals and polycrystalline β-FeSi2+x thin films, Thin Solid Films 381, 287-295 (2001). DOI: https://doi.org/10.1016/S0040-6090(00)01758-2
- [21] K. Nogi, T. Kita, Rapid production of β-FeSi2 by spark-plasma sintering, J. Mater. Sci. 35, 5845-5849 (2000). DOI: https://doi.org/10.1023/A:1026752206864
- [22] J. Tani, H. Kido, Electrical properties of Co-doped and Ni-doped β-FeSi2, J. Appl. Phys. 84, 1408 (1998). DOI: https://doi.org/10.1063/1.368174
- [23] H. Nagai, M. Ito, S. Katsuyama, K. Majima, The Effect of Co and Ni Doping on the Thermoelectric Properties of Sintered β-FeSi2, Journal of the Japan Society of Powder and Powder Metallurgy, Released December 04, 2009. DOI: https://doi.org/10.2497/jjspm.41.560
- [24] H.Y. Chen, X.B. Zhao, C. Stiewe, D. Platzek, E. Mueller, Microstructures and thermoelectric properties of Co-doped iron disilicides prepared by rapid solidification and hot pressing, J. Alloys Compd. 433, 338-344 (2007). DOI: https://doi.org/10.1016/j.jallcom.2006.06.080
- [25] Y. Ohta, S. Miura, Y. Mishima, Thermoelectric semiconductor iron disilicides produced by sintering elemental powders, Intermetallics, 7, 1203-1210 (1999). DOI: https://doi.org/10.1016/S0966-9795(99)00021-7
- [26] H.Y. Chen, X.B. Zhao, T.J. Zhu, Y.F. Lu, H.L. Ni, E. Muller, A. Mrotzek, Influence of nitrogenizing and Al-doping on microstructures and thermoelectric properties of iron disilicide materials, Intermetallics 13, 704-709 (2005). DOI: https://doi.org/10.1016/j.intermet.2004.12.019
- [27] M. Ito, H. Nagai, E. Oda, S. Katsuyama, K. Majima, Effects of P doping on the thermoelectric properties of β-FeSi2, J. Appl. Phys. 91, 2138-2142 (2002). DOI: https://doi.org/10.1063/1.1436302
- [28] X. Qu, S. Lü, J. Hu, Q. Meng, Microstructure and thermoelectric properties of β-FeSi2 ceramics fabricated by hot-pressing and spark plasma sintering, J. Alloys Compd. 509, 10217-10221 (2011). DOI: https://doi.org/10.1016/j.jallcom.2011.08.070
- [29] Y. Ma, R. Heijl, A.E.C. Palmqvist, Composite thermoelectric materials with embedded nanoparticles, J Mater Sci 48, 2767-2778 (2013). DOI: https://doi.org/10.1007/s10853-012-6976-z
- [30] T. Wejrzanowski, Computer Assisted Analysis of Gradient Materials Microstructure, Masters Thesis, Warsaw University of Technology (2000).
- [31] K. Nogi, T. Kita, X-Q. Yan, Optimum Sintering and Annealing Conditions for β-FeSi2 Formed by Slip Casting, J. Ceram. Soc. Japan 109, 265-269 (2001). DOI: https://doi.org/10.2109/jcersj.109.1267_265
- [32] G. Shao, K.P. Homewood, On the crystallographic characteristics of ion beam synthesized, Intermetallics 8, 1405-1412 (2000). DOI: https://doi.org/10.1016/S0966-9795(00)00090-X
Uwagi
1. This work was conducted at Faculty of Materials and Engineering Warsaw University of Technology within the National Science Centre, Poland PRELUDIUM 7 grant entitled “The influence of dopants, nanoparticles, texture and manufacturing methods on thermoelectric properties of carbon disilicide” (2014/13/N/ST8/00619) and also supported by National Centre for Research and Development (NCBR, Poland) within a framework of the project entitled “Innovative thermoelectric modules for energy harvesting” (PBS3/A5/49/2015).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f17f7c1-94e5-4983-9615-a7ddfa953818