PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical evaluation of sound attenuation provided by periodic structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of periodic structures as noise abatement devices has already been the object of considerable research seeking to understand its efficiency and see to what extent they can provide a functional solu- tion in mitigating noise from different sources. The specific case of sonic crystals consisting of different materials has received special attention in studying the influence of different variables on its acoustic performance. The present work seeks to contribute to a better understanding of the behavior of these structures by implementing an approach based on the numerical method of fundamental solutions (MFS) to model the acoustic behavior of two-dimensional sonic crystals. The MFS formulation proposed here is used to evaluate the performance of crystals composed of circular elements, studying the effect of varying dimen- sions and spacing of the crystal elements as well as their acoustic absorption in the sound attenuation provided by the global structure, in what concerns typical traffic noise sources, and establishing some broad indications for the use of those structures.
Słowa kluczowe
Rocznik
Strony
503--516
Opis fizyczny
Bibliogr. 19 poz., wykr.
Twórcy
autor
  • I.P.C., Instituto Superior de Engenharia de Coimbra R. Pedro Nunes, 3030-199 Coimbra, Portugal CIEC – Departamento de Engenharia Civil da Universidade de Coimbra R. Luis Reis Santos, 3030-788 Coimbra, Portugal
autor
  • CICC, Departamento de Engenharia Civil, Universidade de Coimbra R. Lu´ıs Reis Santos, 3030-788 Coimbra, Portugal
  • DECivil, Instituto Superior Técnico, Universidade Técnica de Lisboa Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Bibliografia
  • 1. Alves C.J.S., Valtchev S.S. (2005), Numerical comparison of two meshfree methods for acoustic wave scattering, Engineering Analysis with Boundary Elements, 29, 4, 371-382.
  • 2. Antonio J., Tadeu A., Godinho L. (2008), A three-dimensional acoustics model using the method of fundamental solutions, Engineering Analysis with Boundary Elements, 32, 525-531.
  • 3. den Boer L.C., Schroten A. (2007), Traffic noise reduction in Europe Health effects, social costs and technical and policy options to reduce road and rail traffic noise, Delft.
  • 4. Castiñeira-Ibáñez S., Rubio C., Romero-Garcia V., Sánchez-Pérez J.V., Garcıa-Raffi L.M. (2012), Design, Manufacture and Characterization of an Acoustic Barrier Made of Multi-Phenomena Cylindrical Scatterers Arranged in a Fractal-Based Geometry, Archives of Acoustics, 37, 4, 455-462.
  • 5. Fairweather G., Karageorghis A. (1998), The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math., 9, 69-95.
  • 6. Fairweather G., Karageorghis A., Martin P. (2003), The method of fundamental solutions for scattering and radiation problems, Engineering Analysis with Boundary Elements, 27, 759-769.
  • 7. Godinho L., Amado Mendes P., Tadeu A., Cadena-Isaza A., Smerzini C., S´anchez Sesma F., Madec R., Komatitsch D. (2009), Numerical Simulation of Ground Rotations along 2D Topographical Profiles under the Incidence of Elastic Plane Waves, Bulletin of the Seismological Society of America, 99, 2B, 1147-1161.
  • 8. Godinho L., Tadeu A., Amado Mendes P. (2007), Wave propagation around thin structures using the MFS, Computers Materials, Continua (CMC), 5, 2, 117-127.
  • 9. Golberg M., Chen C.S. (1999), The method of fundamental solutions for potential, Helmholtz and diffusion problems. Boundary Integral Methods: Numerical and Mathematical Aspects, Computational Engineering, vol. 1. Boston, MA: WIT Press/Computational Mechanics Publications, pp. 103-176.
  • 10. Martínez-Sala R., Rubio C., Garcia-Raffi L.M., Sanchez-Perez J.V., Sanchez-Perez E.A., Llinares J. (2006), Control of noise by trees arranged like sonic crystals, Jour. Sound Vib., 291, 100.
  • 11. Martínez-Sala R., Sancho J., Sánchez J.V., Gomez V., Llinares J., Meseguer F. (1995), Sound attenuation by sculpture, Nature, 378, 241.
  • 12. Romero García D. (2010), On the control of propagating acoustic waves in sonic crystals: analytical, numerical and optimization techniques, Doctoral Thesis.
  • 13. Sánchez-Pérez J.V., Rubio C., Martınez-Sala R., Sánchez-Grandia R., Gomez V. (2002), Acoustic barriers based on periodic arrays of scatterers, Appl. Phys. Lett., 81, 5240.14.
  • 14. Sandberg U. (2003), The Multi-Coincidence Peak around 1000 Hz in Tyre/Road Noise Spectra, Euronoise, Naples.
  • 15. Tadeu A., Godinho L., Antonio J. (2001), Benchmark Solution for 3D Scattering from Cylindrical Inclusions, Journal of Computational Acoustics, 9, 4, 1311-1328.
  • 16. Umnova O., Attenborough K., Linton C.M. (2006), Effects of porous covering on sound attenuation by periodic arrays of cylinders, J. Acoust. Soc. Am., 119, 1.
  • 17. Vasseur J.O., Deymier P.A, Djafari-Rouhani B., Pennec Y., Hladky-Hennion A-C. (2008), Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates, Phys. Rev. B, 77, 085415.
  • 18. World Health Organizatiom Regional Office for Europe (2011), Burden of disease from environmental noise, Frank Theakston [Ed.], ISBN: 978 92 890 0229 5.
  • 19. Wu L.-Y., Chen L.-W., Liu C.-M. (2009), Acoustic pressure in cavity of variously sized two-dimensional sonic crystal with various filling fraction, Phys. Lett. A, 373, 1189-1195.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f0fc2cc-dc52-4096-bfa7-2da425325958
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.