Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Microgeneration of energy has the potential to become an important component of the energy policy of many governments, because it may substantially lower carbon emissions and reduce the need for new infrastructure. Nevertheless, from recent studies it follows that, even in the developed countries, microgeneration technology is far from being widely adopted. In this study, we use data collected in a survey conducted in Lower Silesia, a south-western region of Poland, to build behavioural profiles of energy consumers, in order to get some insights into barriers to microgeneration becoming extensively adopted. In particular, we exploit the decision tree method to determine typical attributes of potential prosumers, to find the relative importance of these attributes and, finally, to make some predictions based on data that were not used in constructing the model. From our findings, it follows that economical criteria are the most important triggers for considering the installation of microgeneration technologies. Thus any governmental initiative promoting pro-ecological behaviours, including the use of renewable energy sources, should be based primarily on financial incentives to succeed.
Czasopismo
Rocznik
Tom
Strony
75--94
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
autor
- Faculty of Computer Science and Management, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw
autor
- Faculty of Computer Science and Management, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw
autor
- Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
Bibliografia
- [1] ARKESTEIJN K., OERLEMANS L., The early adoption of green power by Dutch households. An empirical exploration of factors influencing the early adoption of green electricity for domestic purposes, Energy Pol., 2005, 33,183–196.
- [2] BATLEY S., COLBOURNE D., FLEMING P., URWIN P., Citizen versus consumer. Challenges in the UK green power market, Energy Pol., 2001, 29, 479–487.
- [3] BRAYNOV S., Personalization and Customization Technologie. The Internet Encyclopedia, Wiley, 2004.
- [4] Central Statistical Office, Demographic Yearbook of Poland, Statistical Publishing, Warsaw 2016.
- [5] Central Statistical Office, Energy from renewable sources in 2015, Warsaw 2016 (in Polish).
- [6] DELAMAIRE L., ABDOU H.A.H., POINTON J., Credit card fraud and detection techniques. A review, Banks Bank Syst., 2009, 4, 57–68.
- [7] DIAMANTOPOULOS A., SCHLEGELMILCH B.B., SINKOVICS R.R., BOHLEN G.M., Can socio-demographics still play a role in profiling green consumers? A review of the evidence and an empirical investigation, J. Business Res., 2003, 56, 465–480.
- [8] DIAZ-RAINEY I., ASHTON J.K., Profiling potential green electricity tariff adopters: Green consumerism as an environmental policy tool?, Business Strat. Environ., 2011, 20, 456–470.
- [9] DOUGLAS J., RESSLER R., BURGESS A., HARTMAN C., Criminal profiling from crime scene analysis, Behav. Sci. Law, 1986, 4, 401–421.
- [10] ELLSWORTH-KREBS K., REID L., Conceptualising energy prosumption: Exploring energy production, consumption and microgeneration in Scotland, UK, Environ. Plan. A, 2016, 48 (10), 1988–2005.
- [11] Energy transformation. The impact on the power sector business model, 13th PwC Annual Global Power and Utilities Survey, PwC, 2013, available at: https: //www.pwc.com/ua/en/industry/energy-and-utilities/assets/pwc-global-survey-new.pdf
- [12] FABISZ K., FILIPOWSKA A., HOSSA T., HOFMAN R., Profiling of prosumers for the needs of energy demand estimation in microgrids, Int. J. En. Opt. Eng. (IJEOE), 2015, 4, 29–45.
- [13] FAWCETT T., PROVOST F., Combining data mining and machine learning for effective user profiling, [In:] E. Simoudis, J. Han, U.M. Fayyad (Eds.), Proc. Second International Conference on Knowledge Discovery and Data Mining, AAAI Press, Portland, Oregon, 1996, 8–13.
- [14] GERPOTT T.J., MAHMUDOVA I., Determinants of green electricity adoption among residential customers in Germany, Int. J. Cons. Stud., 2010, 34, 464–473.
- [15] GERPOTT T.J., MAHMUDOVA I., Determinants of price mark-up tolerance for green electricity lessons for environmental marketing strategies from a study of residential electricity customers in Germany, Business Strat. Environ., 2010, 19, 304–318.
- [16] GIURA L., Decision trees explained using WEKA, Technobium.com, 2016, available at: Http://Tech Nobium.Com/Decision-Trees-Explained-Using-Weka/
- [17] GÖSSLING S., PEETERS P., CERON J.P., DUBOIS G., PATTERSON T., RICHARDSON R.B., The eco-efficiency of tourism, Ecol. Econ., 2005, 54, 417–434.
- [18] BREMDAL B.A., The impact of prosumers in a smart grid based energy market, http://smartgridsno/wp-content/uploads/sites/4/2014/04/IMPROSUME-short-article.pdf
- [19] JORDAAN S.M., ROMO-RABAGO E., MCLEARY R., The role of energy technology innovation in reducing greenhouse gas emissions: a case study of Canada, Renew. Sustain. En. Rev., 2017, 78, 1397–1409.
- [20] KARKI R., PO H., BILLINTON R., A simplified wind power generation model for reliability evaluation, IEEE Trans. En. Conv., 2006, 21, 533–540.
- [21] KOTCHEN M., MOORE M., Private provision of environmental public goods: household participation in green-electricity programs, J. Environ. Econ. Manage., 2007, 53, 1–16.
- [22] LAMPROPOULOS I., VANALME G.M.A., KLING W.L., A methodology for modeling the behavior of electricity prosumers within the smart grid, Proc. Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Gothenburg 2010, 1–8.
- [23] MALINOWSKI J., A semi-Markov model of the variability of power generation from renewable sources, Oper. Res. Dec., 2013, 23 (2), 81–90.
- [24] MCKINNEY W., Data structures for statistical computing in Python, Proc. 9th Python in Science Conference, Austin, Texas, 2010, 51–56.
- [25] DE OLIVIERI M.M.A., ROCHA M.S., DE CASTRO M.R.V., DE SOUZA S.M., MEDEIROS W.K.J.C., VISCONTI I.F., GALDINO M.A.E., BORGES E.L.P., DA SILVA I.W.F., LIMA.A.A.N., DE CARVALHO C.M., SOARES Y.M.S., VIEIRA J.J., Distributed generation in the smart grid. Case study of Parintins, Energy Proc., 2014, 57, 197–206.
- [26] OTTMAN J., Industry’s response to green consumerism, J. Business Strat., 1993, 13, 3–7.
- [27] PARAG Y., SOVACOOL B.K., Electricity market design for the prosumer era, Nature Energy, 2016, 1, 1–6.
- [28] PEDREGOSA F., VAROQUAUX G., GRAMFORT A., MICHEL V., THIRION B., GRISEL O., BLONDEL M., PRETTENHOFER P., WEISS R., DUBOURG V., VANDERPLAS J., PASSOS A., COURNAPEAU D., BRUCHER M., PERROT M., DUCHESNAY E., Scikit-learn: Machine learning in Python, J. Machine Learning Res., 2011, 12, 2825–2830.
- [29] PERRY S., KLEMEŠ J., BULATOV I., Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors, Energy, 2008, 33 (10), 1489–1497.
- [30] QUINLAN J.R., Induction of decision trees, Machine Learning, 1986, 1, 81–106.
- [31] RASCHKA S., Python Machine Learning, Packt Publishing, 2015.
- [32] RATHNAYAKA A.J.D., POTDAR V.M., HUSSAIN O., DILLON T., Identifying prosumer’s energy sharing behaviours for forming optimal prosumer-communities, Proc. Int. Conf. Cloud and Service Computing (CSC), Hong Kong, China, 2011, 199–206.
- [33] ROPUSZYŃSKA-SURMA E., WȨGLARZ M., Barriers to the development of diffuse energy production, Przegl. Elektrotechn., 2017, 4, 90–94.
- [34] ROPUSZYŃSKA-SURMA E., WȨGLARZ M., The pro-economical behaviour of households and their knowledge about changes in the energy market, E3S Web of Conferences 14, Energy and Fuels, Krakow, Poland, 2016, available at: doi: https://doi.org/10.1051/e3sconf/20171401006.
- [35] Python Reference Manual, G. van Rossum, F.L. Drake (Eds.), Python Labs, Virginia, USA, 2001, available at: http://www.python.org
- [36] ROWLANDS I., SCOTT D., PARKER P., Consumers and green electricity: profiling potential purchasers, Business Strat. Environ., 2003, 12, 36–48.
- [37] SCARPA R., WILLIS K., Willingness-to-pay for renewable energy. Primary and discretionary choice of British households’ for micro-generation technologies, Energy Econ., 2010, 32, 129–136.
- [38] SCHAFER J.B., KONSTAN J.A., RIEDL J., E-Commerce recommendation applications, Data Mining and Knowledge Discovery, 2001, 5, 115–153.
- [39] SHIM J.P., WARKENTIN M., COURTNEY J.F., POWER D.J., SHARDA R., CARLSSON C., Past, present, and future of decision support technology, Dec. Supp. Syst., 2002, 33, 111–126.
- [40] SIMS R.E.H., ROGNER H.-H., GREGORY K., Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation, Energy Pol., 2003, 31 (13), 1315–1326.
- [41] SONG Y.Y., LU Y., Decision tree methods. Applications for classification and prediction, Shanghai Arch. Psych., 2015, 27, 130–135.
- [42] Domestic Microgeneration. Renewable and Distributed Energy Technologies, Policies and Economics, I. Staffell, D.J.L. Brett, N. Brandon (Eds.), Routledge, New York 2015.
- [43] TAN P.N., STEINBACH M., KUMAR V., Introduction to Data Mining, Addison-Wesley, 2006.
- [44] TOFFLER A., The Third Wave, William Morrow and Company, New York 1980.
- [45] WISER R.H., Using contingent valuation to explore willingness to pay for renewable energy. A comparison of collective and voluntary payment vehicles, Ecol. Econ., 2007, 62, 419–432.
- [46] ZARNIKAU J., Consumer demand for green power and energy efficiency, Energy Pol., 2003, 31, 1661–1672.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f0e479f-baab-4b72-a675-6a4400d6b7ef