Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The photoacoustic cell is the heart of the nondestructive photoacoustic method. This article presents a new simple lumped-components CRLC model of the Helmholtz type photoacoustic cell. This model has been compared with the well known literature models describing the Helmholtz type cells for photoacoustic spectroscopy. Experimental amplitude and phase frequency data obtained for the two photoacoustic cells have been presented and interpreted in a series of models. Results of the fitting of theoretical curves, obtained in these models, to the experimental data have been shown and discussed.
Czasopismo
Rocznik
Tom
Strony
545--552
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr., wzory
Twórcy
autor
- Technical University of Koszalin, Department of Electronics and Computer Science, Śniadeckich 2, 75-453 Koszalin, Poland
autor
- Technical University of Koszalin, Department of Electronics and Computer Science, Śniadeckich 2, 75-453 Koszalin, Poland
Bibliografia
- [1] Rey, J. M., Romer, C., Gianella, M., Sigrist, M. W. (2010). Near-infrared resonant photoacoustic gas measurement using simultaneous dual-frequency excitation. Appl. Phys. B 100(1), 189-194.
- [2] Chrobak, Ł., Maliński, M., Patryn, A. (2011). Influence of Plasma Waves on the Photoacoustic Signal of Silicon Samples. International Journal of Thermophysics 32(9), 1986-1997.
- [3] Balderas-Lopez, J. A., Gutierrez-Juarez, G., Jaime-Fonseca, M. R., Sanchez-Sinencio, F. (1999). Measurements of thermal effusivity of liquids using a conventional photoacoustic cell. Rev. Sci. Instrum. 70(4), 2069-2071.
- [4] Rosencwaig, A., Gersho, A. (1976). Theory of the photoacoustic effect with solids. J. Appl. Phys. 47(1), 64-74.
- [5] Rosencwaig, A. (1997). Photoacoustic spectroscopy of solids. Rev. Sci. Instrum., 48(9), 1133-1138.
- [6] Fernelius, N. C. (1979). Helmholtz resonance effect in photoacoustic cells. Appl. Opt. 18(11), 1784-1787.
- [7] Morse, P. M. (1948). Vibration and sound. McGraw-Hill, New York.
- [8] Blitz, J. (1964). Elements of acoustics. Butterworths, London.
- [9] Nolle, A. W. (1953). Small - signal impedance of short tubes. J. Acoust. Soc. Am. 25(1), 32-39.
- [10] Kastle, R., Sigrist, M. W. (1996). Temperature dependent photacoustics spectroscopy with a Helmholtz resonator. Appl. Phys. B 63(4), 389-397.
- [11] Mattiello, M. (2006). Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsS DFB lasers. Spectrochim. Acta A 63(5), 952-958.
- [12] Starecki, T. (2005). Practical improvements of modeling of photoacoustic Helmholtz cells. Proc. SPIE 6159, 653–658.
- [13] Starecki, T. (2007). Loss - improved electro acoustical modeling of small Helmholtz resonators. J. Acoust. Soc. Am. 122, 2118-2123.
- [14] Starecki, T. (2008). Windowless Open Photoacoustic Helmholtz Cell. Acta Physica Polonica A, 114, 211-216.
- [15] Chrobak, Ł., Maliński, M. (2013). Design and optimization of the photoacoustic cell for nondestructive photoacoustic spectroscopy. Nondestructive Testing and Evaluation 28(1), 17-27.
- [16] Maliński, M., Chrobak, Ł., Zakrzewski, J., Strzałkowski, K. (2011). Photoacoustic Method of Determination of Quantum Efficiency of Luminescence in Mn2+ Ions in Zn1-x-yBexM%Se Crystals. Opto-Electronics Review 19(2), 183-188.
- [17] Chrobak, Ł., Maliński, M., Zakrzewski, J., Strzałkowski, K. (2010). The Photoacoustic Spectroscopic Investigations of the Surface Preparation of ZnSe Crystals with the use of the Optimization Methods. Applied Surface Science 256, 2458-2461.
- [18] Maliński, M., Chrobak, Ł., Patryn, A. (2009). Theoretical and Experimental Studies of a Plasma Wave Contribution. Acta Acustica united with Acustica 95, 60-64.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f0e2ee2-42cd-4b74-b16d-5d4e46d816b9