PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiplicity of k-convex solutions for a singular k-Hessian system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we study the following nonlinear k-Hessian system with singular weights [formula], where 𝜆 >0 , 1 ≤𝑘 ≤𝑁 is an integer, Ω stands for the open unit ball in ℝ𝑁 , and 𝑆𝑘(𝜎(𝐷2𝑢)) is the k-Hessian operator of u. By using the fixed point index theory, we prove the existence and nonexistence of negative k-convex radial solutions. Furthermore, we establish the multiplicity result of negative k-convex radial solutions based on a priori estimate achieved. More precisely, there exists a constant 𝜆∗ >0 such that the system admits at least two negative k-convex radial solutions for 𝜆 ∈(0,𝜆∗).
Wydawca
Rocznik
Strony
art. no. 20240066
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
  • College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
autor
  • College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
Bibliografia
  • [1] L. Caffarelli, L. Nirenberg, and J. Spruck, Dirichlet problem for nonlinear second order elliptic equations III, Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261–301, DOI: https://doi.org/10.1007/BF02392544.
  • [2] N. M. Ivochkina, Solution of the Dirichlet problem for some equations of the Monge-Ampère type, Mat. Sb. 128 (1985), 403–415, (in Russian). DOI: https://doi.org/10.1070/SM1987v056n02ABEH003043.
  • [3] N. S. Trudinger and X. J. Wang, Hessian measures I, Topol. Methods Nonlinear Anal. 10 (1997), no. 2, 225–239, DOI: https://doi.org/10.12775/TMNA.1997.030.
  • [4] J. I. E. Urbas, On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations, Indiana Univ. Math. J. 39 (1990), 355–382, DOI: https://doi.org/10.1512/iumj.1990.39.39020.
  • [5] N. S. Trudinger and X. J. Wang, The Monge-Ampère equation and its geometric applications, Handbook of Geometric Analysis, vol. I, Higher Education Press, Beijing, 2008, pp. 467–524.
  • [6] C. Escudero, Geometric principles of surface growth, Phys. Rev. Lett. 101 (2008), no. 19, 196102, DOI: https://doi.org/10.1103/PhysRevLett.101.196102.
  • [7] C. Escudero and E. Korutcheva, Origins of scaling relations in nonequilibrium growth, J. Phys. A. Math. Theor. 45 (2012), no. 12, 125005, DOI: https://doi.org/10.1088/1751-8113/45/12/125005.
  • [8] X. Ji and J. Bao, Necessary and sufficient conditions on solvability for Hessian inequalities, Proc. Amer. Math. Soc. 138 (2010), 175–188, DOI: https://doi.org/10.1090/S0002-9939-09-10032-1.
  • [9] B. Wang and J. Bao, Over-determined problems for k -Hessian equations in ring-shaped domains, Nonlinear Anal. 127 (2015), 143–156, DOI: https://doi.org/10.1016/j.na.2015.06.032.
  • [10] Y. Li, L. Nguyen, and B. Wang, The axisymmetric σk -Nirenberg problem, J. Funct. Anal. 281 (2021), 109198, DOI: https://doi.org/10.1016/j.jfa.2021.109198.
  • [11] Z. Zhang and S. Zhou, Existence of entire positive k-convex radial solutions to Hessian equations and systems with weights, Appl. Math. Lett. 50 (2015), 48–55, DOI: https://doi.org/10.1016/j.aml.2015.05.018.
  • [12] W. Wei, Uniqueness theorems for negative radial solutions of k -Hessian equations in a ball, J. Differential Equations 261 (2016), 3756–3771, DOI: https://doi.org/10.1016/j.jde.2016.06.004.
  • [13] D. P. Covei, A remark on the existence of entire large and bounded solutions to a ( )k k,1 2 -Hessian system with gradient term, Acta Math. Sin. (Engl. Ser.) 33 (2017), 761–774.
  • [14] D. P. Covei, A necessary and a sufficient condition for the existence of the positive radial solutions to Hessian equation and systems with weights, Acta Math. Sci. 37 (2017), 47–57, DOI: https://doi.org/10.1016/S0252-9602(16)30114-X.
  • [15] J. F. deOliveira, J. M. do Ó, and P. Ubilla, Existence for a k-Hessian equation involving supercritical growth, J. Differential Equations 267 (2019), 1001–1024, DOI: https://doi.org/10.1016/j.jde.2019.01.032.
  • [16] X. Zhang and M. Feng, The existence and asymptotic behavior of boundary blow-up solutions to the k-Hessian equation, J. Differential Equations 267 (2019), 4626–4672, DOI: https://doi.org/10.1016/j.jde.2019.05.004.
  • [17] G. Wang, Z. Yang, L. Zhang, and D. Baleanu, Radial solutions of a nonlinear k-Hessian system involving a nonlinear operator, Commun. Nonlinear Sci. Numer. Simul. 91 (2020), 105396, DOI: https://doi.org/10.1016/j.cnsns.2020.105396.
  • [18] X. Zhang, J. Xu, J. Jiang, Y. Wu, and Y. Cui, The convergence analysis and uniqueness of blow-up solutions for a Dirichlet problem of the general k-Hessian equations, Appl. Math. Lett. 102 (2020), 106124, DOI: https://doi.org/10.1016/j.aml.2019.106124.
  • [19] F. Jiang and N. Trudinger, On the Dirichlet problem for general augmented Hessian equations, J. Differential Equations 269 (2020), 5204–5227, DOI: https://doi.org/10.1016/j.jde.2020.04.004.
  • [20] L. Zhang, Z. Yang, G. Wang, and M. M. Rashidi, Classification and existence of positive entire k -convex radial solutions for generalized nonlinear k-Hessian system, Appl. Math. J. Chinese Univ. 36 (2021), no. 4, 564–582, DOI: https://doi.org/10.1007/s11766-021-4363-8.
  • [21] M. Feng, New results of coupled sy stem of k -Hessian equations, Appl. Math. Lett. 94 (2019), 196–203, DOI: https://doi.org/10.1016/j.aml.2019.03.008.
  • [22] X. Zhang, P. Xu, and Y. Wu, The eigenvalue problem of a singular k -Hessian equation, Appl. Math. Lett. 124 (2022), 107666, DOI: https://doi.org/10.1016/j.aml.2021.107666.
  • [23] Z. Yang and Z. Bai, Existence and multiplicity of radial solutions for a k -Hessian system, J. Math. Anal. Appl. 512 (2022), 126159, DOI: https://doi.org/10.1016/j.jmaa.2022.126159.
  • [24] X. Zhang, Positive solutions of singular ki-Hessian systems, Appl. Math. Lett. 130 (2022), 108058, DOI: https://doi.org/10.1016/j.aml.2022.108058.
  • [25] G. Wang, Z. Yang, J. Xu, and L. Zhang, The existence and blow up of the radial solutions of a ( )k k,1 2 -Hessian system involving a nonlinear operator and gradient, Acta Math. Sci. 42 (2022), 1414–1426.
  • [26] G. Wang and Q. Zhang, Non-degeneracy and uniqueness of the radial solutions to a coupled k -Hessian system, Appl. Math. Lett. 133 (2022), 108248, DOI: https://doi.org/10.1016/j.aml.2022.108248.
  • [27] C. Gao, X. He, and M. Ran, On a power-type coupled system of k-Hessian equations, Quaest. Math. 44 (2021), no. 11, 1593–1612, DOI: https://doi.org/10.2989/16073606.2020.1816586.
  • [28] Z. Bai and Z. Yang, Existence of k -convex solutions for the k -Hessian equation, Mediterr. J. Math. 20 (2023), no. 3, 150, DOI: https://doi.org/10.1007/s00009-023-02364-8.
  • [29] Z. Yang and Z. Bai, Existence results for the k -Hessian type system with the gradients via R+n-monotone matrices, Nonlinear Anal. 240 (2024), 113457, DOI: https://doi.org/10.1016/j.na.2023.113457.
  • [30] Z. Bai and Z. Yang, On p-k-convex solutions for the p-k-Hessian system with the gradient term, Quaest. Math. 2024 (2024), 1–18, DOI: https://doi.org/10.2989/16073606.2024.2381557.
  • [31] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
  • [32] M. A. Krasnosel’skii, Positive Solutions of Operator Equations, Noordhoff, Gronignen, 1964.
  • [33] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620–709, DOI: https://doi.org/10.1137/1018114.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f0384b7-a1b4-49ca-a584-fb6b00153946
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.