Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ Triton X-100 na produkcję włókien PVA metodą elektroprzędzenia
Języki publikacji
Abstrakty
Electrospinning represents a low cost technique applied in the production of micro- and nano-fibres. The use of poly(vinyl alcohol) as supporting matrix in aqueous solution for fibre deposition introduces important advantages related with drug release (based on the low toxicity of polymer). On the other side, imperfections of resulting fibres (bead formation) represents an impediment to be circumvented. The introduction of non ionic surfactant (triton X-100) circumvents bead formation and improves the homogeneity of fibre, as verified in the analysis of thermal, structural and morphological properties of PVA net. The results indicate that minimal dispersion of triton X-100 in solution (in the order of 1 wt%) affects the circularity of beads, while at 10 wt% a reduction in the defect concentration in the order of five times is verified with a reasonable reduction in the diameter of the remaining defects and improvement in the regularity of fibres.
Elektroprzędzenie jest techniką o niskich kosztach dla produkcji mikro i nano włókien. Zastosowanie PVA dla odkładania się włókien w wodnym roztworze posiada istotne zalety związane z uwalnianiem się leków i niską toksycznością polimeru. Niedoskonałości otrzymanych włókien w postaci zgrubień skłaniają do poszukiwania środków zaradczych. Badania wykazały, że małe ilości Triton X-100 zdyspergowanego w roztworze w ilości ok. 1% wpływają na zaokrąglenie zgrubień, podczas gdy przy 10% uzyskuje się pięciokrotną redukcję ilości defektów i ich zmniejszenie.
Czasopismo
Rocznik
Strony
39--43
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
- Institute of Research in Materials Science, Federal University of Săo Francisco Valley, Juazeiro, Brazil
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador, Brazil
autor
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador, Brazil
- Institute of Research in Materials Science, Federal University of Săo Francisco Valley, Juazeiro, Brazil
autor
- Institute of Research in Materials Science, Federal University of Săo Francisco Valley, Juazeiro, Brazil
Bibliografia
- 1. USA, Patent No. 1975504, 1934.
- 2. USA, Patent No. 2169962, 1939.
- 3. USA, Patent No. 2187306, 1940.
- 4. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. Composites Science and Technology 2003; 63 (15): 2223-2253.
- 5. Shin C, Chase GG, Reneker DH. Recycled expanded polystyrene nanofibers applied in filter media. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005; 262: 211–215.
- 6. Islam MdS, Akter N, Karim MdR. Preparation of superhydrophobic membranes by electrospinning of fluorinated silane functionalized pullulan.Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010; 362: 117–120.
- 7. Pant HR, Bajgai MP, Yi C, Nirmala R, Nam KT, Baek W, Kim HY. Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010; 370: 87–94.
- 8. Ma Z, Ji H, Tan D, Teng Y, Dong G, Zhou J, Qiu J, Zhang M. Silver nanoparticles decorated, flexible SiO2 nanofibers with long-term antibacterial effect as reusable wound cover. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011; 387: 57– 64.
- 9. Wu YG, An Q, Yin JX, Hua T, Xie HM, Li GT, Tang H. Liquid crystal fibers produced by using electrospinning technique. Colloid and Polymer Science 2008; 286 (8-9): 897-905.
- 10. Sill TJ, Von Recum HA. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008; 29 (13): 1989-2006.
- 11. Liu Y, Antaya H, Pellerin C. Structure and Phase Behavior of the Poly(ethylene oxide)−Thiourea Complex Prepared by Electrospinning. The Journal of Physical Chemistry B 2010; 114 (7): 2373-2378.
- 12. Liu DG, Chang PR, Chen MD, Wu QL. Synthesis, characterization and adsorption performance of a novel postcrosslinked adsorbent. Journal of Colloid and Interface Science 2011; 354 (2): 637-643.
- 13. Jia PT, Yee WA, Xu JW, Toh CL, Ma J, Lu XH. Journal of Membrane Science 2011; 376 (1-2): 283-289.
- 14. Taylor G. In: National Academy of Sciences USA, A313 (1515), 1969, 453- 475.
- 15. Yarin AL, Koombhongse S, Reneker DH. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. Journal of Applied Physics 2001; 90 (9): 4836-4846.
- 16. Matthias SW, Matthias M. International Journal of Mass Spectrometry 1994; 136 (2–3): 167–180.
- 17. Tao J, Shivkumar S. Materials Letters 2007; 61 (11-12): 2325-2328.
- 18. Zanatta G, Steffens D, Braghirolli DI, Fernandes RA, Netto CA, Pranke P. Viability of mesenchymal stem cells during electrospinning. Brazilian Journal of Medical and Biological Research 2012; 45 (2): 125-130.
- 19. Šukytė J, Adomavičiūtė E, Milašius R, Bendoraitienė J, Danilovas PP. Formation of Poly(Vinyl Alcohol)/Cationic Starch Blend Nanofibres via the Electrospinning Technique: The Influence of Different Factor. Fibres & Textiles in Eastern Europe 2012; 20, 3(92): 16-20.
- 20. Matusevičiūtė A, Butkienė A, Stanys S, Adomavičiūtė E. Formation of PVA Nanofibres with Iodine by Electrospinning. Fibres & Textiles in Eastern Europe 2012; 20, 3(92): 21-25.
- 21. Mollá S, Compañ V. Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. Journal of Membrane Science 2011; 372 (1–2): 191–200.
- 22. Fu Q, Jin Y, Song X, Gao J, Han X, Jiang X, Zhao Q, Yu D. Nanotechnology 2010; 21 (9): 5703-5707.
- 23. Fang X, Ma H, Xiao S, Shen M, Guo R, Cao X, Shi X. Journal of Materials Chemistry 2011; 21: 4493-4501.
- 24. Choa D, Hoepkerb N, Frey MW. Materials Letters 2012; 68: 293–295.
- 25. Barhate RS, Ramakrishna S. Nanofibrous filtering media: Filtration problems and solutions from tiny materials. Journal of Membrane Science 2007; 296 (1- 2): 1-8.
- 26. Park JH, Karim MR, Kim IK, Cheong IW, Kim JW, Bae DG, Cho JW, Yeum JH. Colloid and Polymer Science 2010; 288 (1): 115-121.
- 27. de Oliveira AHP, Moura JAS, de Oliveira HP. Polímeros 2013; 23(2): 196-200.
- 28. Yang D, Li Y, Nie J. Carbohydrate Polymers 2007; 69 (3): 538-543.
- 29. Liu Y, He JH, Yu JY, Zeng HM. Polymer International 2008; 57: 632–636.
- 30. Supaphol P, Suwantong O, Sangsanoh P et al., Electrospinning of Biocompatible Polymers and Their Potentials in Biomedical Applications. In: R Jayakumar, SV Nair (Eds.), Biomedical Applications of Polymeric Nanofibers. Springer, Berlin, 2012, 213-240.
- 31. Fong H, Chun I, Reneker DH. Polymer 1999; 40 (16): 4585-4592.
- 32. Huang C, Chen S, Lai C, Reneker DH, Qiu H, Ye Y et al. Nanotechnology 2006; 17: 1558-1563.
- 33. Kriegel C, Kit KM, McClements DJ, Weiss J. Food Biophysics 2009; 4 (3): 213-228.
- 34. Lin T, Wang HX, Wang HM, Wang XG. Nanotechnology 2004; 15: 1375-1381.
- 35. Yao L, Haas T, Guiseppi-Elie A, Bowlin GL, Simpson DG, Wnek GE. Chem. Mater. 2003; 15: 1860-1864.
- 36. Wang X, Chen X, Yoon K, Fang D, Hsiao BS, Chu B. Environ. Sci. Technol. 2005; 39: 7684-7691.
- 37. Collins TJ. Biotechniques 2007; 43 (1): 25-30.
- 38. Barboriak DP, Padua AO, York GE, MacFall JR. Journal of Digital Imaging 2005; 18 (2): 91–99.
- 39. Rajwa B, Mcnally HA, Varadharajan P, Sturgis J, Robinson JP. Microscopy Research and Technique 2004; 64 (2): 176–184.
- 40. Gering E, Atkinson CT. Journal of Parasitology 2004; 90 (4): 879-881.
- 41. Eliceiri KW, Rueden C. Photochemistry and Photobiology 2005; 81 (5): 1116- 1122.
- 42. Tubbs RK. Journal of Polymer Science Part A: Polymer Chemistry 1965; 3 (12): 4181-4189.
- 43. Islam MdS, Karim MdR. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010; 366: 135-140.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f024f77-dd16-463f-a712-9ad1f3fdde4b