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This paper firstly expands an efficient numerical methodology developed
from the source panel method to the added mass calculation of long column systems
in fluid. Structures submerged in fluid are considered as two-dimensional and are
discretized into a number of source panels. The influence coefficient matrices and
the potential function are then calculated and the fluid forces are calculated by the
unsteady Bernoulli equation. Finally, we utilize this present method to calculate the
mass coefficients of some typical problems, which effectively verifies its feasibility
and accuracy. This method takes into account both applicability and computational
efficiency. On the one hand, in contrast to the analytical method which is only ap-
plicable to specific cross-sections, this method is applicable to arbitrary boundaries
with C0 continuity in mathematics. On the other hand, this method requires less mesh
and computation than commercial software. This paper extends the application of
the source panel method which is widely used in aerodynamics to provide a reference
for added mass calculation problems in engineering.
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1. Introduction

The movements of structures in fluid may cause the surrounding fluid to
move, and the accelerated fluid thereby creates a non-uniform pressure field on
structures. Thus structures are subjected to added fluid forces of the surrounding
fluid. This problem can be found in many applications, especially in nuclear
engineering, and has been regarded as a typical problem in Applied Mechanics.
The fluid effect should be carefully evaluated because it can enormously change
the structures of dynamic behaviors. People mainly focus on the inertia effect
of the fluid, particularly in free vibration, because it is the main factor that
affects the natural characteristics [1] and vibration characteristics in dynamic
analysis [2] of the system. The fluid inertia effect due to the motion of a structure
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can be generally quantified in terms of the mass coefficients and its moving
acceleration [1, 3], the calculation of mass coefficients is of great importance in
engineering.

It is usually difficult to solve the added masses of structures directly. In
engineering such as heat exchanger tubes in nuclear reactors, many structures
are usually long columns and the hydrodynamic problem can be considered as
two-dimensional [1, 3]. This allows the solution of the added mass to be very
simplified. Experiments have also verified the accuracy of two-dimensional mod-
els [4]. In a more general sense, the fluid in which these structures are immersed
is restricted by other boundaries, which refers to a bounded fluid. Fritz [4] may
have been the first to propose a method for evaluating the fluid forces of two
moving coaxial circles in incompressible, frictionless fluids by Lagrange’s equa-
tions. The author pointed out that the method suggested for the two-sections
problem can apply to multiple-body problems; however, this problem is so com-
plex that the fluid specialist must work with the dynamics specialist to develop
the solutions. Chung and Chen [5] presented an analytical method for the
mass coefficients of a group of circular cylinders immersed in a fluid contained
in a cylinder by the series method. However, this method can only apply to the
cylindrical structures submerged in a container and is unavailable for other com-
plex sections. Dong [6] gave the mass coefficients of single elliptical, rhombic,
rectangular, and H-shaped sections, but the mass coefficients of more complex
cross-sections were not discussed.

For more complex structures, Paidoussi [1] firstly used the self-programmed
finite elements method (differentiate with the commercial finite element software
like ANSYS) for the mass coefficients calculation of cylinders in a liquid-filled
channels. It is shown that the finite element method is more general but is less
efficient for the problem presented in [5]. In recent years, with increasing pop-
ularity of commercial software, it has also been used for the mass coefficients
calculation. Jeong [7] studied the added mass effect on translational and ro-
tation motions of a square section in the ANSYS square wall and obtained the
rule of natural frequencies and the gap. This method is easy to operate, but
it is difficult to calculate the coupling mass coefficients between sections them-
selves. Li [8] studied the added mass of spent fuel storage racks by the CFD
method, and the numerical results are in good agreement with the experiment.
This method can also be used to calculate the coupling added coefficient. How-
ever, it is worth noting that this method will cost lots of computing time, and
updating the moving fluid grid is still a big challenge.

By summarizing the relevant literature above, we found that for the calcu-
lation of mass coefficients of two-dimensional sections, analytical and numerical
methods have the advantages of efficiency and applicability, respectively. How-
ever, analytical solutions are not easily applied to more general cases due to
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their limitations. The analytical methods are not suitable for complex cross-
sections [4, 5], and even are inapplicable if the boundaries are not with C1 conti-
nuity in mathematics. The fluid finite element methods generally require complex
meshing and programming work [1]. Furthermore, the CFD methods need to do
enough transient analysis to finally obtain the required steady fluid force, which
needs much time, and updating the fluid grids which is also a big challenge [8].
In respect of engineering practice, some new methods are still needed that can
give accurate solutions at a low cost of computing and programming.

We notice that in aerodynamics, the source panel method is an efficient tech-
nique for the numerical solution of non-lifting flows over arbitrary sections and
bodies in aviation [9]. It has the advantages of high efficiency and easy pro-
gramming and has become a standard aerodynamic tool. This method has been
widely used in the calculations of fluid forces of aircraft [10], ships and marine
propellers [11, 12], racing cars [13], and plate structures [14]. It is based on replac-
ing the section’s geometry with singularity panels so it can therefore be applied to
calculations with arbitrary cross-sections. These advantages of the panel method
mean that it may provide an efficient method, for calculating added mass coeffi-
cients for complex sections immersed in the fluid. Based on the three-dimensional
panel method, Ashby [15] developed a low-order potential-flow panel code. This
code was originally developed for the calculation of internal flow model, jet wake
model, and the time-stepping wake model. Sahin [16] had successfully extended
this code to added mass calculations for two and three dimensional structures
and it is found that this code can be successfully used for calculating the added
masses. It is worth noting that, in [16], the authors have defined the length of
the column to be very long in order to simulate the two-dimensional situation,
but the calculation is actually built according to the three-dimensional model.
As a result there are many elements in the length direction, which increase the
number of required elements and reduce the efficiency of the calculation. In fact,
for two-dimensional models, it is possible to calculate their added masses from
the two-dimensional panel method. While to the best of our knowledge, there
is no research literature on using it for the mass coefficients of structures in
engineering, and this is the intended role of the present study.

In this technical paper, the panel method is expanded and developed to the
added mass coefficient calculations of complex sections in fluids for the first time.
We begin Section 2 with a general model of a group of sections with arbitrary
boundaries in a confined fluid and give the fundamental equations for calculating
the added mass coefficients. Moreover, this section presents a detailed numerical
modeling approach to applying the panel method for the added mass coefficients.
Section 3 comprehensively examines its effectiveness and accuracy by comparing
the results calculated by this new numerical method and other theories and
software. These validation examples are carefully selected that can cover some
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typical section boundary features (C0 or C1 continuity, a single boundary, or
a group of boundaries) and the fluid domain feature (open or bounded flow).
Finally, some general conclusions of this study are summarized in Section 4.

2. Modeling and methodology

2.1. Model and basic equations

A generic diagram of the current system is shown in Fig. 1(a). There is
a group of sufficiently long columns which can be considered as two-dimensional
sections Ai (i = 1, . . . , N) in a sufficiently long container. The container, with
an arbitrarily closed boundary B0, is filled with fluid. The fluid is assumed to be
inviscid, irrotational and incompressible fluid, i.e. ideal fluid. It is worth noting
that the fluid is assumed to be inviscid and therefore fluid added damping cannot
be calculated in this method. As with much of the literature, only the added mass
calculations, most relevant to the kinetic properties are considered in this paper.
Each of the inner section in the container is enclosed by an arbitrarily closed
boundary Bi (i = 1, . . . , N), and there is no fluid inside them. It is assumed that
all sections are undeformed but can undergo the plane translational motions. If
the container is absent, it corresponds to the case of an open fluid (infinite fluid).

As pointed out by [5], the effect on the i-th section caused by sections’ motion
can be calculated by the superposition principle. Assume that the j-th section is
moving with the velocity vj = (vxj , v

y
j ), and all of the other boundaries are sta-

tionary. Such motion can result in a disturbance of the fluid velocity perturbation
potential ϕ, and its control equation is written as

(2.1) ∇2ϕ= 0.

The above equation is the well-known Laplace equation and should be solved
by the following boundary conditions:

(2.2)
∂ϕ

∂nk
=

{
vj · nj , k = j,

0, k 6= j,

where nk = (nxk, n
y
k) is the normal vector of the boundary Bk, and vxj and vyj are

the components of the velocity vj in the x and y directions, respectively.
The fluid pressure pi due to the fluid disturbance potential ϕ on the bound-

ary Bi can be calculated by the unsteady Bernoulli equation as [5]

(2.3) pi = −ρf
∂ϕ

∂t

∣∣∣∣
onBi

,

where ρf is the fluid density. From Eqs. (2.1)–(2.3), it is known that the fluid
pressure is a function of j-th section acceleration, and the fluid force on the i-th
section can be calculated as:
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(a) (b)

Fig. 1. Sketch of (a) the model of a group of sections in a container and (b) the system
discretization.

(2.4)


Fi−x = −

∮
Bi

p · nxi ds = −ρf (αija
x
j + σija

y
j ),

Fi−y = −
∮
Bi

p · nyi ds = −ρf (τija
x
j + βija

y
j ),

where axj and ayj are respectively the components of the acceleration of the j-th
section in the x and y directions; and they are defined as

aj =
dvj
dt

, (axj , a
y
j ),

and αij , σij , τij , βij are the coefficients standing for the coupling fluid inertia
force between different sections. For a further evaluation, we consider that the
boundary Bj is moving with a unit acceleration, then we can obtain the following
four non-dimensional coefficients:

(2.5)



mij−xx = −
Fi−x(axj ≡ 1, ayj ≡ 0)

ρfAi
=
αij
Ai
,

mij−yx = −
Fi−y(a

x
j ≡ 1, ayj ≡ 0)

ρfAi
=
τij
Ai
,

mij−xy = −
Fi−x(axj ≡ 0, ayj ≡ 1)

ρfAi
=
σij
Ai
,

mij−yy = −
Fi−y(a

x
j ≡ 0, ayj ≡ 1)

ρfAi
=
βij
Ai
,

where Ai is the cross-area of the i-th section and can be calculated as

Ai =

∫∫
©
Ai

dx dy.
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These coefficients mij−xx, mij−yx,mij−xy, mij−yy are so-called mass coefficients,
which implies that the motion of the j-th section can result in the added fluid
inertia force not only on itself (i = j) but also on the other sections (i 6= j).
The first and second variables to the right of the symbol ‘−’ in the subscript
represent the direction of the force and motion, respectively.

2.2. Application of source panel method

In the previous section we obtained the perturbation potential equation and
its boundary conditions, and now we give the method for its numerical solution.
The studied model and its discretization are shown in Fig. 1. The boundaries Bi
(i = 0, . . . , N) have been discretized into a set of panels. At the center of each
panel, there is a control point. On the j-th panel, as shown in Fig. 2, we define
a local coordinate at its middle point, namely (ξ, η). According to the panel
method, a source distribution is considered along with this panel, and the source
strength per length on this panel is assumed constant such that λj(ξ) = λj =
const. The induced velocities by the source distribution at the control points can
be calculated by the integrations in terms of the source of intensity λj .

Fig. 2. Sketch of a panel model and its local coordinate system.

According to the superposition principle, the total flow induced-velocity at
this control point by all panels is calculated as

(2.6) invi=

MN∑
j=1

invij =

MN∑
j=1

vCijλj ,

where MN =
∑N

i=0Mi is the total number of all panels, invij is the normal
flow velocity at the control point of the i-th panel induced by the j-th panel,
and vCij is the influence coefficient of the normal fluid-induced velocity between
panels i and j, and is defined as
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(2.7) vCij =
ñi
2π
·


∫ ∆j

2

−∆j
2

ξi − ξ
(ξi − ξ)2 + η2

i

dξ

∫ ∆j
2

−∆j
2

ηi

(ξi − ξ)2 + η2
i

dξ


T

,

where ñi is the unit normal vector of the i-th panel in the local coordinate
system.

When the flow induced-velocities of all control points are obtained, the bound-
ary condition of Eq. (2.2) can be specified at these points as

(2.8) (inv)MN×1 = vCMN×MN × ΛMN×1 = (vB)MN×1,

where Λ is the vector of the strength of the source on all panels. The vector of
the normal velocities vB at all control points results by the motion of the j-th
section, is defined as:

vB =



0(j−1∑
i=0

Mi

)
×1

−−−−−−
vj · nj1
vj · nj2
...

vj · njMj


−−−−−−
0( N∑

i=j+1
Mi

)
×1


=



0(j−1∑
i=0

Mi

)
×1

−−−−−−
Ix · nj1
Ix · nj2
...

Ix · njMj


−−−−−−
0( N∑

i=j+1
Mi

)
×1


· vxj +



0(j−1∑
i=0

Mi

)
×1

−−−−−−
Iy · nj1
Iy · nj2
...

Iy · njMj


−−−−−−
0( N∑

i=j+1
Mi

)
×1


· vyj(2.9)

∆
= Bj−x · vxj + Bj−y · vyj ,

where njk = (nxjk, n
y
jk) is the vector of the normal direction of the k-th panel on

the boundary Bj , and Ix = (1, 0), Iy = (0, 1).
From Eq. (2.8), the source strength vector of all panels is solved as

(2.10) Λ = vC−1 × vB,

and then the fluid potential on boundary Bi is calculated as

(2.11) (Φi)Mi×1 = ϕCMi×MN × ΛMN×1 = ϕC× vC−1 × vB,

where Φi is the potential vector of panels on Bi, ϕC is the matrix of influence
coefficients. ϕCij means the potential at i-th control point caused by the j-th
panel and it is also evaluated in the local coordinate system of j-th panel as
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(2.12) ϕCij =
1

4π

∆j/2∫
−∆j/2

ln[(ξ − ξi)2 + η2
i ] dξ.

Finally, the fluid pressure on the boundary Bi is solved as

(2.13) (pi)Mi×1 = −ρf
∂Φi

∂t
= −ρf · ϕC× vC−1 × aB , aC× aB,

where pi is the vector of pressure at control points on the boundary Bi, aB is
the vector of accelerations at all control points, which is defined as

(2.14) aB ,
dvB
dt

= Bj−x · axj + Bj−y · ayj .

Accordingly, the fluid force on the i-th section is then calculated from the fol-
lowing product, such that:

(2.15)

{
Fi−x = −sxi · pi = −ρf (αija

x
j + τija

y
j ),

Fi−y = −syi · pi = −ρf (σija
x
j + βija

y
j ).

Then these four coefficients, αij , σij , τij , βij given in Eq. (2.5) now can be rewrit-
ten as:

(2.16)


αij = sxi · (aC×Bj−x),

σij = syi · (
aC×Bj−x),

τij = sxi · (aC×Bj−y),

βij = syi · (
aC×Bj−y),

where the vectors sxi and syi respectively stand for the projected length of the
panels on the boundary Bi along the x and y directions, and are calculated as

(2.17)

{
sxi = [nxi1∆li1, n

x
i2∆li2, . . . , n

x
iMi

∆liMi ]
T ,

syi = [nyi1∆li1, n
y
i2∆li2, . . . , n

y
iMi

∆liMi ]
T ,

where ∆lik is the length of the k-th panel on the boundary Bi.
Finally, by substituting the results of Eq. (2.16) into Eq. (2.5), the four added

mass coefficients are completely determined. It should be pointed out that, like
in the literature such as [3, 18, 19], to simplify the analysis, only one direction of
acceleration is considered. Hence in the following discussion, we only take into
account the mass coefficients about the acceleration in the x-direction. Consider
the first two lines of Eq. (2.16) and define the following simple formulation with
neglecting the left superscript; thus, we obtain

(2.18)


mij−xx =

sxi · (aC×Bj−x)

Ai
,

mij−yx =
syi · (aC×Bj−x)

Ai
.



A numerical approach in applying panel method. . . 159

When i = j, these above coefficients stand for the added fluid force on the i-th
section caused by its own motion and are called the added mass conferences; and
the coefficients for i 6= j refer to the added fluid force caused by the motions of
other sections and are called the coupling mass coefficients.

3. Verification and discussion

3.1. Comparison with other theories

To verify the accuracy and discuss the applicability of the present numerical
method, we apply it for some typical problems and also compare with other
theories and software. With no loss of generality, firstly we consider the following
three simple and typical cases in Fig. 3, whose added mass coefficients have been
calculated or approximated by theoretical methods.

(a) (b) (c)

Fig. 3. Examples for verification. (a) Two circular sections in an infinite fluid. (b) Two
coaxial squares. (c) A group of circular sections in a cylindrical container. These three

examples are the case that the section has a single boundary.

As shown in Fig. 3(a), in the first example, there are two circular sections
in an open fluid [20]. These two circular cylinders have the same radius R, and
the distance between them is d. The boundaries of this model are C1 continuity
and the outer container is absent, i.e., it is the case of an open flow. As for this
classic problem, [20] presented a theoretical analysis, and the coefficients m11−xx
is calculated as

(3.1) m11−xx = 1 + 4sinh2α

∞∑
n=1

ne−n(2α+β)

sinh(nβ)
,

where

α = ln

(
P

2R
+

√(
P

2R

)2

− 1

)
, β = ln

(
P 2 − 2R2

2R2
+

√(
P 2 − 2R2

2R2

)2

− 1

)
,

and P = d+ 2R is the distance between the centers of two circular cylinders.
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Fig. 4. Examination on the convergence of the present method. (a) Results of mass
coefficient in terms of panel number. (b) Comparison of the present method and Eq. (3.1).

In the present numerical calculation, the circumference is divided intoN parts
evenly. The convergence of the present method is evaluated in Fig. 4(a), where
m11−xx is plotted in terms ofN for various ratios of d/R, (R = 1). From Fig. 4(b),
it is seen that for the different ratios of d/R, m11−xx firstly increases sharply
with increasing N . The growth rate decreases gradually, then slowly decays with
increasing N and converges to the analytical solution calculated by Eq. (3.1a).
Though the convergence rate is slow when N > 24, all relative errors between
the present method and the analytical solution are less than 1.5%, showing the
accuracy of the present method. (In the following numerical examples, we have
all performed such a convergence analysis, and the further discussion is carried
out after the convergence guaranteed). The comparison of the present method
and Eq. (3.1) for various d is shown in Fig. 4(b). From this comparison, it is
seen that the present results are in good agreement with the theoretical ones.
The accuracy of the present method for calculating the added mass coefficient
of a cylindrical section in an infinite fluid is verified. In addition, Fig. 4(b) shows
that as d increases, m11−xx decreases, because the other cylinder will stagnate
the flow line, resulting in an increase of fluid pressure, which becomes more
pronounced as d decreases.

Next, we discuss the added mass coefficient of structure in confined fluid. As
shown in Fig. 3(b), we consider a square section in an outer square container.
This interesting model is used to model spent fuel storage racks submerged in
the water contained in a pool and studied in [21]. Note that these boundaries of
sections are only C0 continuity, leading difficulties in the mathematical analysis
so that the traditional series solution [5] is no longer applicable. In [21], the
added mass coefficient on the inner square can be approximated evaluated as

(3.2) m11−xx =

(
a1

12h1
+

a1

12h3
+

a2

4h2
+

a2

4h4

)
.
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To facilitate this discussion, we assume that the four gaps have the same values
(h1 = h2 = h3 = h4 = h0), and Fig. 5 shows the dependence ofm11−xx on h0. It is
seen that when h0 < 0.1, the present numerical results are in good agreement
with Eq. (3.2); however, as h0 further increases, the difference between them
is continually growing. When h0 is relatively large, say, h0 � 1, the present
numerical result is approaching the theoretical value m11−xx = 1.186, and this is
consistent with the conclusion in [6]. But the result of Eq. (3.2) ism11−xx = 0 and
this is clearly incorrect because this means that the structure is not influenced
by the fluid. In fact, as [21] emphasized, Eq. (3.2) is only applicable when h is
small. Those results mean that this method is also accurate for the calculation
of the added mass coefficient of the section in the boundary fluid and is more
applicable than Eq. (3.2).
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Fig. 5. Results of mass coefficients in terms of h0 and the comparison with Eq. (3.2).

In the previous two examples we discussed single and two sections, to further
discuss the applicability of this method we consider the case of multiple sections.
As shown in Fig. 3(c), there is a group of circular sections in a cylindrical con-
tainer, this model can be found in the steam generator [1]. Each circular section
refers to a separated pipe, implying that all sections can undergo independent
motions. The boundaries of a steam generator are C1 continuity, and a series solu-
tions for the added coefficients was firstly proposed by Chen [5]. We also applied
the present numerical method for such a classical problem, and following [22] the
parameters are specified as R = 3.3mm, d = 8.28mm, and L = 14.1566mm.
Due to this model’s symmetry, only the added mass coefficients in Sections 1, 3,
and 4 are discussed here. Figure 6 shows that the present numerical results are
in good agreement with the theoretical solutions. One section’s motion often
causes mass coefficients in both the x- and y-directions. Interestingly, the sum of
mass coefficients in the x- and y-directions for these three sections are evaluated
in Table 1 and compared with the results calculated by the method in [5] and
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Fig. 6. Results of mass coefficients and the comparison with [5].

Table 1. The sums of mass coefficients and the comparison with [5].

Cases
∑7
j=0 mij−xx

∑7
j=0 mij−yx

i 1 3 7 1 3 7
Present −0.9912 −0.9925 −0.9912 −0.0008 0 0
Chung [5] −0.9998 −0.9997 −0.9997 −0.0001 0 0

good agreement between them can be observed. These results are also consis-
tent with the conclusion in [23] that the sum of the added mass coefficients of
other sections along the motion direction caused by a section’s motion is equal
to the constant value −1, and the sum of the coefficients perpendicular to the
motion is the constant value 0. It is worth noting that the continuity charac-
ters of boundaries of those sections in Figs. 3(b) and 3(c) are different; however,
the present method shows good applicability; that is one of its most important
advantages.

3.2. Comparison with software

In Fig. 3, these sections generally have only a single section, and this is a sim-
ple case that can be analyzed by a theoretical method. In order to further discuss
the applicability of the present method, next, we consider the case of a group
of motion-dependent sections in a confined fluid. As shown in Fig. 7(a), now
we perform a numerical computation to the single fuel assembly in the pressur-
ized water reactor (PWR). This model can be simplified as a group of sections in
a fluid confined by four core baffles. The PWR fuel assembly consists of a 17×17
array of 264 fuel rods, 24 control rod guide tubes, and one instrumentation tube;
due to an actual model’s complexity, a 6× 6 fuel rods array mock-ups are taken
to simulate the fuel assembly in [24]. Unlike the motion-independent sections
in Fig. 3(c), these sections are all connected to a rigid grid (the dashed rect-



A numerical approach in applying panel method. . . 163

angular) and will undergo the same motion. In this situation, the inner section
boundary is not a single boundary as the above two cases, it should be a group
of circle boundaries. The model is complex, and it is not easy to solve the added
mass coefficients by a theoretical method. We solve these mass coefficients using
the commercial software ANSYS and FLUENT. A comparison of results applies
to validate the accuracy of the present method.

The details of the simplified model of a fuel assembly is shown in Fig. 7(a).
In the area with dashed lines, there is a fuel assembly containing 36 fuel rods
of a circular cross-section. The fuel rod diameters and the distance between the
centers of rod are R = 4.75mm and d = 12.6mm, respectively. We calculate
this model by both present method and software for a comparison. The finite
element model in ANSYS is shown in Fig. 7(b), in which the assembly is dis-
cretized by the PLANE42 element and the fluid is discretized by the FLUID29
element. All the degrees of freedom of the nodes on assembly are coupled into
one degree of freedom. The assembly is connected to a fixed point by a linear
spring (COMBIN14 element) and its density is set as ρa.

(a) (b)

Fig. 7. The verification example of a PWR fuel assembly. (a) The simplified mechanical
model. (b) The computational model in ANSYS. In this case the section boundary is a group

of circle boundaries.

The following is a brief description of the scheme, we calculated the mass
coefficients from this software. Firstly, we set the fluid density to 0 (i.e., there is
no fluid) and denote the calculated frequency as fa. And then, we set the fluid
as ρw and denote the calculated frequency as fw. Then according to vibration
mechanics, the added mass coefficient can be expressed as

(3.3) m11−xx =
ρa
ρw

(
f2
a

f2
w

− 1

)
.

In ANSYS, we set ρa = ρw to simplify the calculation.
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The results of the added mass coefficient of the assembly with different gaps
are compared in Fig. 8(a). For the different gaps between the fuel assembly
and four core baffles, the relative error between the results calculated by the
two methods is less than 2%, implying that this method is effective. The results
calculated by present and ANSYS show a conclusion that may be counterintuitive
for many people: the gap perpendicular to the direction of motion has a more
significant effect on the added mass coefficient of the fuel assembly. In fact, we
can also draw the same conclusion from the added mass coefficients of a spent
fuel rack given in Eq. (3.2). Equation (3.2) shows that the gap perpendicular to
the motion direction (h2 and h4) has a greater influence than others (h1 and h3).
To qualitatively explain this phenomenon, we discuss a simple mode in Fig. 8(b).
A cylinder section is located in the fluid enclosed by four baffles, and the cylinder
radius is 1m while the gap between the cylinder and baffle in the direction of the
cylinder motion is 0.1m. The length and width of the rectangular fluid field are
10m and 2.2m, respectively. We set the cylinder boundary with a given velocity
V = 0.001m/s, and the flow field and pressure distribution for such a given
velocity boundary are then calculated by using FLUENT.

(a) (b)

Fig. 8. (a) Mass coefficients in terms of gaps and the comparison with ANSYS. (b) Velocity
vectors and pressure comparison for a simplified model.

The velocity vectors of the flow are shown in Fig. 8(b). It is seen that when
the gap perpendicular to the direction of motion is large (the left one), the fluid
can outflow from the gap, so the pressure is relatively small. However, when
the gap is small (the right one), it is not easy for the fluid to outflow, leading
to a larger pressure. It is worth noting that the computational complexity of
the present method is much smaller than that of ANSYS. For the fuel assembly
model in Fig. 7, when δx = δy = 3mm, 101800 elements are needed for ANSYS
modeling while in the present discrete models, only 1156 panels are used, and
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it means the present numerical method is more efficient. In this model, the
boundaries of fuel assembly are C1 while those of core baffles are C0, and this
indicates the good applicability of the present method to complex boundaries.

The last problem we examined is shown in Fig. 9(a), and its discrete model
calculated by FLUENT is shown in Fig. 9(b). This model extends the case
of Fig. 7(a) from one to three assemblies. There is a 1 × 3 array of 108 fuel
rods of circular sections, which is also a classical model in the nuclear engineer-
ing design. Following the practical engineering problem, the fuel assemblies are
assumed to be placed parallel to each other in a closed liquid. Each fuel assem-
bly (the gray square in Fig. 9(a)) consists of an array of 36 rods, as shown in
the circle sections in the square with dash lines in Fig. 7(a). The distance be-
tween two fuel assemblies is δ = 3.94mm, and the gaps between fuel assembly
and core baffles are δx = δy = 2.67mm). Different from the model in Fig. 7,
each assembly or baffles, moving independently, will lead to fluid forces not only
on itself but also on other assemblies. We also calculated this problem by both
the present method and FLUENT. The fluid is set as unsteady and inviscid in
FLUENT, and the dynamic mesh technology is used. Specify the motion of the
assembly or baffles with a constant acceleration in the horizontal direction and
extract the total forces acting on the assemblies. Use these forces to divide the
constant acceleration and the weight of the assembly discharging fluid, and then
the mass coefficients can be obtained.

(a)

(b)

Fig. 9. The verification example of 1× 3 PWR fuel assemblies. (a) The simplified
mechanical model. (b) The computational model in FLUENT.

The results of mass coefficients calculated by the present method and
FLUENT are compared and shown in Table 2, where the subscript “0” stands
for the core baffles. The present method and software results well agree, and the
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maximum relative error is less than 3%. The error of the model in Fig. 7 is more
significant than that of the model in Fig. 6; this may be because the transient
calculation in FLUENT is not as accurate as the modal calculation in ANSYS.
The same model as the single fuel assembly model in Fig. 7 also contains both
the C1 and C0 boundaries. These examples examined in this section show that
the present panel method is accurate and effective for the calculations of mass
coefficients. The present numerical method can provide some references for mass
coefficient calculations of other engineering structures.

Table 2. Results of the present method and a comparison with FLUENT.

Added mass
coefficients

m10−xx m11−xx m20−xx m22−xx m30−xx m33−xx

Present −3.561 2.508 −3.612 2.642 −3.561 2.508
FLUENT −3.479 2.541 −3.644 2.629 −3.479 2.541
error (%) −2.357 −1.298 0.878 0.494 −2.357 −1.298

4. Summary

For the long columnar structures commonly found in engineering, this pa-
per reports a numerical study on the added mass of structures with complex
sections in the fluid. The boundaries of structures are firstly discretized into sev-
eral panels, and constant sources are set on each panel to satisfy the boundary
conditions. Then the influence matrix is obtained by the singular integral. The
fluid pressure on these panels is calculated using the influence matrices and the
motions of a specified boundary. Finally, the mass coefficients are calculated as
the quotient of fluid forces acting on sections and the mass of fluid displaced by
these sections.

This paper developed an efficient and accurate numerical solution based on
the two-dimensional source panel method. We use the present method to calcu-
late the added masses of five typical structures and compare with other methods.
The results show the accuracy and efficiency of the method. This method has
the wide applicability, whether the fluid is bounded or not, the boundaries are
C0 or C1 continuity, and the section with a single boundary or a group of bound-
aries. Its applicability and simplicity make it an effective tool for other related
engineering problems.
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