Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
9,10-bis (fenyloetynolo) antraceny z peryferyjnymi grupami dicyjanowinylowymi dla ogniw słonecznych
Języki publikacji
Abstrakty
A series of 9,10-bis(phenylethynyl)anthracene dicyanovinyl end-capped derivatives have been used in bulk heterojunction (BHJ) photovoltaic cells prepared by the solution process. The compounds were excessively decorated with moieties enhancing solubility to avoid spontaneous crystallisations in the blends. The topology of the dyes is of the acceptor-donor-acceptor (A-D-A) type. The quantum chemical calculations were done at the B3LYP/6-31G(d) level of theory and HOMO-LUMO levels were calculated. The solar cells’ configuration was as follows: ITO/PEDOT:PSS/P3HT(P3OT)dyes/Al and parameters characterising them, open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF) and power conversion efficiency (PCE) are presented. Anthracene based A-D-A molecules showed photovoltaic activity with an average power conversion efficiencies (PCE) of 2.7%.
Zsyntetyzowano grupę związków na osnowie 9,10-bis(fenyloetynylo)antracenu z peryferyjnymi grupami eletrono-akceptorowymi typu dicyjanowinylenu. Związki zmodyfikowano grupami funkcyjnymi zwiększającymi ich rozpuszczalność i utrudniającymi krystalizację. Przygotowano komórki fotowoltaiczne o strukturze objętościowej metodą wirową. Obliczenia kwantowo-chemiczne przeprowadzono przy funkcjonale B3LYP na poziomie 6-31G(d) i wyliczono energię poziomów elektronowych HOMOLUMO. Opisane ogniwa scharakteryzowano podając następujące parametry: sprawność urządzenia (PCE), współczynnik wypełnienia (FF), napięcie rozwarcia (Voc) i prąd zwarcia (Jsc). Skonstruowane urządzenie o konfiguracji: ITO/PEDOT:PSS/P3HT(P3OT)barwnik/Al osiągnęło sprawność 2.7%.
Czasopismo
Rocznik
Tom
Strony
47--59
Opis fizyczny
Bibliogr. 48 poz., wz., tab., wykr.
Twórcy
autor
- Institute of Chemistry, Agricultural University
autor
- Institute of Chemistry, Agricultural University
autor
- Institute of Physics, Cracow University of Technology
autor
- Institute of Physics, Cracow University of Technology
autor
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology
Bibliografia
- [1] Pope M., Kallmann H.P, Magnante P., Electroluminescence in Organic Crystals, J. Chem. Phys. 38, 1963, 2042–2046.
- [2] Helfrich W., Schneider W.G., Recombination Radiation in Anthracene Crystals, Phys. Rev. Lett. 14, 1965, 229–231.
- [3] Nasu K., Nakagawa T., Nomura H., Lin C.-J., Cheng C.-H., Tseng M.-R., Yasuda T., Adachi C., A highly luminescent spiro-anthracenone-based organic light-emitting diode exhibiting thermally activated delayed fluorescence, Chem. Commun. 49, 2013, 10385–10387.
- [4] Wan W., Du H., Wang J., Le Y., Jiang H., Chen H., Zhu S., Hao J.A., Novel blue luminescent materials for organic light-emitting diodes based on C9-fluorenyl anthracenes, Dyes Pigm. 96, 2013, 642–652.
- [5] Zhang P., Dou W., Ju Z., Yang L., Tang X., Liu W., Wu Y., A 9,9′-bianthracene-cored molecule enjoying twisted intramolecular charge transfer to enhance radiative-excitons generation for highly efficient deep-blue OLEDs, Org. Electron. 14, 2013, 915–925.
- [6] Wang J.-J., Hu T.-L., Bu X.-H., Cadmium(ii) and zinc(ii) metal-organic frameworks with anthracene-based dicarboxylic ligands: Solvothermal synthesis, crystal structures, and luminescent properties, CrystEngComm. 13, 2011, 5152–5161.
- [7] Zhu M., Wang Q., Gu Y., Cao X., Zhong C., Ma D., Qin J., Yang C., Efficient deep-blue emitters comprised of an anthracene core and terminal bifunctional groups for nondoped electroluminescence, J. Mater. Chem. 21, 2011, 6409–6415.
- [8] Zhang J., Xu B., Chen J., Ma S., Dong Y., Wang I., Li B., Ye L., Tian W., An organic luminescent molecule: What will happen when the “butterflies” come together?, Adv. Mater. 26, 2014, 739–745.
- [9] Ye S., Chen J., Di C.-A., Liu Y., Lu K., Wu W., Du C., Liu Y., Shuai Z., Yu G., Phenylsubstituted fluorene-dimer cored anthracene derivatives: Highly fluorescent and stable materials for high performance organic blue- and white-light-emitting diodes, J. Mater. Chem. 20, 2010, 3186–3194.
- [10] Li B., Miao W., Cheng L., Synthesis and fluorescence properties of 9,10-bis(phenylethynyl) anthracences, Dyes Pigm. 43, 1999, 161–165.
- [11] Kilså K., Macpherson A.N., Gillbro T., Mårtensson J., Albinsson B., Control of electron transfer in supramolecular systems, Spectrochim. Acta, Part A 57, 2001, 2213–2227.
- [12] Kawai T., Sasakia T., Irie M., A photoresponsive laser dye containing photochromic dithienylethene units, Chem. Commun., 2001, 711–712.
- [13] Kilså K., Kajanus J., Macpherson A.N., Mårtensson J., Albinsson B., Bridge-Dependent Electron Transfer in Porphyrin-Based Donor-Bridge-Acceptor Systems, J. Am. Chem. Soc. 123, 2001, 3069–3080.
- [14] Ribierre J.C., Ruseckas A., Cavaye H., Barcena H.S., Burn P.L., Samuel I.D.W., Photophysical Properties of 9,10-Disubstituted Anthracene Derivatives in Solution and Films, J. Phys. Chem. A 115, 2011, 7401–7405.
- [15] Levitus M., Garcia-Garibay M.A., Polarized Electronic Spectroscopy and Photophysical Properties of 9,10-Bis(phenylethynyl)anthracene, J. Phys. Chem. A 104, 2000, 8632–8637.
- [16] Angelova A., Ionov R., Monolayer and Spectroscopic Studies of an Amphiphilic (Phenylethynyl)anthracene Probe in Pure and Mixed Films with Charged and Neutral Lipids, Langmuir 15, 1999, 7199–7207.
- [17] Angelov B., Angelova A., Ionov R., An Amino-Substituted Phenylethynyl-anthracene Probe Shows a Sensitivity to Changes in the Lipid Monolayer Curvature of Nonlamellar Lipid/Water Phases, J. Phys. Chem. B 104, 2000, 9140–9148.
- [18] Lübtow M., Helmers I., Stepanenko V., Albuquerque R.Q., Marder T.B., Fernández G., Self-Assembly of 9,10-Bis(phenylethynyl) Anthracene (BPEA) Derivatives: Influence of p–p and Hydrogen-Bonding Interactions on Aggregate Morphology and Self-Assembly Mechanism, Chem. Eur. J. 23, 2017, 6198–6205.
- [19] Wang C.-Y., Ediger M.D., Enhanced Translational Diffusion of 9,10-Bis(phenylethynyl) anthracene (BPEA) in Polystyrene, Macromolecules 30, 1997, 4770–4771.
- [20] Deppe D.D., Dhinojwala A., Torkelson J.M., Small Molecule Probe Diffusion in Thin Polymer Films Near the Glass Transition: A Novel Approach Using Fluorescence Nonradiative Energy Transfer, Macromolecules 29, 1996, 3898–3908.
- [21] Wisnudel M.B., Torkelson J.M., Small-Molecule Probe Diffusion in Polymer Solutions: Studies by Taylor Dispersion and Phosphorescence Quenching, Macromolecules 29, 1996, 6193–6207.
- [22] Giménez R., Pinol M., Serrano J. L., Luminescent Liquid Crystals Derived from 9,10-Bis(Phenylethynyl)anthracene, Chem. Mater. 16, 2004, 1377–1383.
- [23] Xiao D., Xian Y., Liu L., Gu Z., Wen B., Organic nanoparticle of 9,10-Bis(phenylethynyl) anthracene: a novel electrochemiluminescence emitter for sensory detection of amines, New J. Chem. 37, 2013, 1–3.
- [24] Ponnu A., Anslyn E.V., A fluorescence-based cyclodextrin sensor to detect nitroaromatic explosives, Supramol. Chem. 22, 2010, 65–71.
- [25] Kim S.-O., Lee M.W., Jang S.H., Park S.M., Park J. W., Park M.-H., Kang S.H., Kim Y.-H., Song C.K., Kwon S.K., Organic semiconductor based on phenylethynyl end-capped anthracene, Thin Solid Films 519, 2011, 7998–8002.
- [26] Li Y., Ji D., Liu J., Yao Y., Fu X., Zhu W., Xu Ch., Dong H., Li J., Hu W., Quick Fabrication of Large-area Organic Semiconductor Single Crystal Arrays with a Rapid Annealing Self-Solution-Shearing Method, Sci. Rep. 5, 2015, 13195,1–9.
- [27] Malakhov A.D., Skorobogatyi M.V., Prokhorenko I.A., Gontarev S.V., Kozhich D.T., Stetsenko A.D., Stepanova I.A., Shenkarev Z.O., Berlin Y.A., Korshun V.A., 1-(Phenylethynyl) pyrene and 9,10-Bis(phenylethynyl)anthracene, Useful Fluorescent Dyes for DNA Labeling: Excimer Formation and Energy Transfer, Eur. J. Org. Chem., 2004, 1298–1307.
- [28] Fatemi D.J., Murata H., Merritt C.D., Kafafi Z.H., Highly Fluorescent Molecular Organic Composites for Light-Emitting Diodes, Synth. Met. 85, 1997, 1225–1228.
- [29] Huang J., Su J.-H., Tian H., The development of anthracene derivatives for organic lightemitting diodes, J. Mater. Chem. 22, 2012, 10977–10989.
- [30] Fitzner R., Mena-Osteritz E., Walzer K., Pfeiffer M., Bäuerle P., A–D–A-Type Oligothiophenes for Small Molecule Organic Solar Cells: Extending the π-System by Introduction of Ring-Locked Double Bonds, Adv. Funct. Mater. 25, 2015, 1845–1856.
- [31] Lai Y.-Y., Yeh J.-M., Tsai C.-E., Cheng Y.-J., Synthesis, Molecular and Photovoltaic Properties of an Indolo[3,2-b]indole- Based Acceptor–Donor–Acceptor Small Molecule, Eur. J. Org. Chem., 2013, 5076–5084.
- [32] Sahu D., Padhy H., Patra D., Yin J.-F., Hsu Y.-C., Lin J. T., Lu K.-L., Wei K.-H., Lin H.-C., Synthesis and applications of novel acceptoredonoreacceptor organic dyes with dithienopyrroleand fluorene-cores for dye-sensitized solar cells, Tetrahedron 67, 2011, 303–311.
- [33] Kuropatov V., Klementieva S., Fukin G., Mitin A., Ketkov S., Budnikova Y., Cherkasov V., Abakumov G., Novel method for the synthesis of functionalized tetrathiafulvalenes, an acceptoredonoreacceptor molecule comprising of two o-quinone moieties linked by a TTF bridge, Tetrahedron 66, 2010, 7605–7611.
- [34] Silvestri F., Marrocchi A., Acetylene-Based Materials in Organic Photovoltaics, Int. J. Mol. Sci. 11, 2010, 1471–1508.
- [35] Danel K., Lin J.T., Novel red-light-emitting 9,10-bis(phenylethynyl)anthracenes, Arkivoc (i), 2002, 12–18.
- [36] Danel K., Ozga K., Kityk I.V., Circularly light-induced electrogyration in the arylethynyl derivatives incorporated within the oligoetheracrylate photopolymer matrices, Chem. Phys. 313, 2005, 33–38.
- [37] Frisch M.J., Trucks G.W., Schlegel H.B. et al., Gaussian 03: Revision E.01, Gaussian Inc., Wallingford CT 2004.
- [38] Fudickar W., Linker T., Why Triple Bonds Protect Acenes from Oxidation and Decomposition, J. Am. Chem. Soc. 134, 2012, 15071–15082.
- [39] Yucel B., Meral K., Ekinci D., Uzunoğlu G.Y., Tüzün N.S., Özbey S., Kazak C., Ozdemir Y., Sanli B., Kayık G., Dağdeviren M., Synthesis and characterization of solution processable 6,11-dialkynyl substituted indeno[1,2-b]anthracenes, Dyes Pigm. 100, 2014, 104–117.
- [40] Pettersson L.A.A., Ghosh S., Inganas O., Optical anisotropy in thin films of poly (3,4-ethylenedioxythiophene)–poly(4-styrenesulfonate), Org. Electron. 3, 2002, 143–148.
- [41] Fujiwara H., Spectroscopic Ellipsometry: Principles and Applications, John Wiley&Sons, Ltd . 2007.
- [42] Feller L., Bearinger J.P., Wu L., Hubbell J. A., Textor M., Tosatti S., Micropatterning of gold substrates based on poly(propylene sulfide-bl-ethylene glycol), (PPS–PEG) background passivation and the molecular-assembly patterning by lift-off (MAPL) technique, Surf. Sci. 602, 2008, 2305–2310.
- [43] Woollam J. A., Co. Inc.CopleteEASETM Data Analysis Manual, Lincon 2009.
- [44] Bujak P., Kulszewicz-Bajer I., Zagorska M., Maurel V., Wielgus I., Pron A., Polymers for Electronics and Spintronics, Chem. Soc. Rev. 42, 2013, 8895–8999.
- [45] Bijak K., Sek D., Siwy M., Grucela-Zajac M., Janeczek H., Wiacek M., Malecki G., Schab-Balcerzak E., Spectral, electrochemical and thermal characteristics of glass forming hydrazine derivatives, Opt. Mater. 37, 2014, 498–510.
- [46] Kung Y.-C., Hsiao S.-H., Novel luminescent and electrochromic polyhydrazides and polyoxadiazoles bearing pyrenylamine moieties, Polym. Chem. 2, 2011, 1720–1727.
- [47] Grigoras M., Vacareanu L., Ivan T., Catargiu A.M., Photophysical properties of isoelectronic oligomers with vinylene, imine, azine and ethynylene spacers bearing triphenylamine and carbazole end-groups, Dyes Pigm. 98, 2013, 71–81.
- [48] Mishra A., Bäuerle P., Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology, Angew. Chem. Int. Ed. 51, 2012, 2020–2067.
Uwagi
EN
KD and OM would like to thank for the financial support from the basic funding of the University of Agriculture in Krakow DS-3711/ICh/17.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1eff103a-09f9-48c5-9ff7-8d68669d8564