PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy characteristics of a DC hybrid generator for a squirrel-cage asynchronous machine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analytical research methods to determine the power characteristics of generator sets with vector control in an asynchronous squirrel-cage machine were developed and used to calculate the energy characteristics of generator sets with the field-oriented control (FOC) and direct torque control (DTC). The analytical calculations showed that a generator set with direct torque control had slightly better energy characteristics. Confirmation of the analytical calculation results was carried out using simulation models developed in the MATLAB-Simulink package with an environment Simscape Power System.
Rocznik
Strony
58--65
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
  • Maritime University of Szczecin, Faculty of Mechatronics and Electric Engineering 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland
Bibliografia
  • 1. Blaschke, F. (1971) Das Prinzip der Feldorientierung, die Grundlage für die Transvektor-Regelung von Drehfeldmaschinen. Siemens Zeitschrift 45, pp. 757–760.
  • 2. Boychuk, L. (1971) Method of structural synthesis of nonlinear automatic control systems. Moscow: Energy.
  • 3. Braslawski, I., Ishmatov, Z. & Barac, E. (2001) Adaptive direct control moment of asynchronous drives. Electrical engineering 11.
  • 4. Brodovski, V. & Ivanov, E. (1974) Electric drives with frequency-current control. Moscow: Energy.
  • 5. Bulgakov, A. (1970) A new theory of control rectifiers. Moscow: Nauka.
  • 6. Depenbrock, M. (1988) Direct Self-Control (DSC) of Inverter-Fed Induction Machine. IEEE Transaction on Power Electronics 3, 4.
  • 7. Ericsen, T., Hingorani, N. & Khersonsy, Y. (2006) Power Electronics and Future Marine Electrical Systems. IEEE Transactions on Industry Applications 42, 1, pp. 155–163.
  • 8. German-Galkin, S. (2013) Virtual laboratory of semiconductor systems in Matlab-Simulink Wednesday. Lane: S. Petersburg.
  • 9. German-Galkin, S. & Hrynkiewicz, J. (2017) Parametric-active compensation of earth fault current in IT-Type network. Power Electronics and Drives 1, 2(37), pp. 81– 87.
  • 10. German-Galkin, S., Sakharov, V. & Tarnapowicz, D. (2019) Energy characteristics of asynchronous electric drive. Management System of Production Engineering 27, 1, pp. 51–54.
  • 11. Kahle, K. (2014) Power Converters and Power Quality. Proc. CAS-CERN Accelerator School Power Converters, R. Bailey (Ed.), Baden, Switzerland, 7–14 May 2014, CERN2015-003, Geneva, 2015, pp. 57–82.
  • 12. Kajstura, K. & Orlowska-Kowalska, T. (2004) Sliding-mode control of induction motor. Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej 56, seria Studia i Materiały 24, pp. 279–290 (in Polish).
  • 13. Kazmierkowski, M.P., Blaabjerg, F. & Krishnan, R. (2002) Control in power Electronics. Selected Problems. San Diego, CA: Elsevier Science.
  • 14. Kovacs, K. & Raz, I. (1963) Transitional processes in machines of alternetic current Moscow-L.: Gosjenergoizdat.
  • 15. Mendes, A. & Cardoso, A. (2006) Fault-tolerant operating strategies applied to three-phase induction-motor drives. IEEE Transactions on Industrial Electronics 53(6), pp. 1807–1817.
  • 16. Mudrik, J., Liptak, N. & Nad, M. (2008) The effect of the speed-torque characteristics upon the steady-state motion of the machine aggregate. Proceedings of the X International Conference on the Theory of Machines and Mechanisms, Liberec, 2008, pp. 417–422.
  • 17. Mudrik, J. & Nad, M. (2008) Principles of mechatronic modelling of machine aggregates. Proceedings of International Conference „Theory and Practice of Gear Drives and Transmissions”, Iževsk, Russia, 2008, pp. 27–32.
  • 18. Nash, J.N. (1997) Direct Torque Control, Induction Motor Vector Control Without an Encoder. IEEE Transaction on Industry Application 33, 2.
  • 19. Oravcova, J. & Mudrik, J. (2008) Contribution to dynamics of machine aggregates containing gearing. Acta Mechanica Slovaca 3, pp. 317–324.
  • 20. Orlowska-Kowalska, T. (2003) Sensorless induction motor drives. Wroclaw: University of Technology Press.
  • 21. Popow, O.S. (2005) Elementy teorii systemów – systemy dynamiczne. Szczecin: Politechnika Szczecińska, Wydział Informatyki.
  • 22. Slezhanovskij, O., Dackovskij, L., Kuznetsov, I., Lebedev, E. & Tarasenko, L. (1983) The slave systems for control electric drive with semicondactor converters. Energoatomizdat.
  • 23. Sobanski, P. & Orlowska-Kowalska, T. (2014) Analysis of space vector modulation technique in inverter-fed fault-tolerant induction motor drive. IEEE International Conference Power Electronics and Motion Control, PEMC 2014, Turkey, on CD.
  • 24. Sokolowski, G. (2006) AC electric drives with frequency control. Moscow: Academy.
  • 25. Takahashi, I. & Noguchi, T. (1986) New Quick-Response and High-Efficiency Control Strategy of an Induction Motor. IEEE Transaction on Industry Application 22, 21.
  • 26. Titinen, P., Pohjalainen, P. & Lalu, J. (1995) The Next Generation Motor Control Method: Direct Torque Control (DTC). EPE Journal 5, 1, pp. 14–18.
  • 27. Wang, L., Lu, S. & Prokhorov, A. (2015) Integration of Wind Power and Wave Power Generation Systems Using a DC Microgrid. IEEE Transactions on Industry Applications 51, 4, DOI: 10.1109/TIA.2014.2367102.
  • 28. Wolkiewicz, M., Tarchała, G. & Kowalski, C.T. (2015) Stator windings condition diagnosis of voltage inverter-fed induction motor in open and closed-loop control structures. Archives of Electrical Engineering 64, 1, pp. 67–79.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1efd7756-f2bf-470d-a9da-2d05c74d1b5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.