PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of corona discharge and overvoltage propagation along transmission lines

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A mathematical model is incorporated into the Alternative Transients Program version of the Electromagnetic transients program (ATP/EMTP), using the MODELS interface introducing the algebraic, differential and Boolean equations, to be solved by the Trapezoidal method. The ATP-EMTP part sets out the additional network elements representing the corona model and discusses the basic aspects of modeling. It simulates transmission lines with the corona effect and computes the attenuation and distortion caused by surge propagation along transmission lines due to corona phenomena with the user-defined multi-branch circuit type94 in ATP. The results of the proposed model are compared with experimental investigations in the literature.
Słowa kluczowe
Rocznik
Strony
45--55
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
  • University of Setif, Department of Electrical Engineering, Automatic Laboratory of Sétif (LAS), Setif 19000, Algeria
  • University of Setif, Department of Electrical Engineering, Automatic Laboratory of Sétif (LAS), Setif 19000, Algeria
Bibliografia
  • [1] Z. da Zhao, “Computation of Transmission Line Transients Including Corona Effects,” IEEE Power Engineering Review, vol. 9, no. 7, pp. 67-68, 1989, doi: 10.1109/MPER.1989.4310822.
  • [2] P. Sarma Maruvada, “Corona performance of high-voltage transmission lines. ,” 2000. http://sutlib2.sut.ac.th/sut_contents/69864.pdf (accessed Jan. 03, 2022).
  • [3] X. Bian et al., “Corona-generated space charge effects on electric field distribution for an indoor corona cage and a monopolar test line,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 5, pp. 1767–1778, Oct. 2011, doi: 10.1109/TDEI.2011.6032849.
  • [4] D. A. Rickard, N. Harid, and R. T. Waters, “Modelling of corona at a high-voltage conductor under double exponential and oscillatory impulses,” IEE Proceedings: Science, Measurement and Technology, vol. 143, no. 5, pp. 277–284, 1996, doi: 10.1049/IPSMT: 19960517.
  • [5] C. F. Wagner and B. L. Lloyd, “Effects of corona on traveling waves,” Electrical Engineering, vol. 74, no. 12, pp. 1071–1071, Jul. 2013, doi: 10.1109/EE.1955.6439688.
  • [6] A. Haddad, N. Harid, and R. T. Waters, “The Simulation of Surge Corona on Transmission Lines Understanding conduction mechanisms in earthing systems and optimisation of earth electrode geometries View project saodah View project,” 1989, doi: 10.1109/MPER.1989.4310638.
  • [7] S. Carneiro and J. R. Martl, “Evaluation of corona and line models in electromagnetictransients simulations,” IEEE Transactions on Power Delivery, vol. 6, no. 1, pp. 334-342, 1991, doi: 10.1109/61.103756.
  • [8] M. T. C. De Barros, J. Festas, C. A. Nucci, and F. Rachidi, “Corona on multiconductor overhead lines illuminated by LEMP,” International Conference on Power Systems Transients, pp. 429-32, 1999, Accessed: Jan. 05, 2022. [Online]. Available: https://infoscience.epfl.ch/record/102226.
  • [9] H. M. Kudyan and C. H. Shih, “A nonlinear circuit model for transmission lines in corona,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-100, no. 3, pp. 1420-1430, 1981, doi: 10.1109/TPAS.1981.316617.
  • [10] K. C. Lee, “Non-linear corona models in an electromagnetic transients program (EMTP),” IEEE Transactions on Power Apparatus and Systems, vol. PAS-102, no. 9, pp. 2936-2942, 1983, doi: 10.1109/TPAS.1983.318144.
  • [11] T. Noda, T. Ono, H. Matsubara, H. Motoyama, S. Sekioka, and A. Ametani, “Charge-voltage curves of surge corona on transmission lines: Two measurement methods,” IEEE Transactions on Power Delivery, vol. 18, no. 1, pp. 307–314, Jan. 2003, doi: 10.1109/TPWRD.2002.806684.
  • [12] C. Gary, A. Timotin, D. C.-I. P. A-Physical, and undefined 1983, “Prediction of surge propagation influenced by corona and skin effect,” ieeexplore.ieee.org, Accessed: Jan. 05, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/4645832/.
  • [13] A. Inoue, “Propagation analysis of overvoltage surges with corona based upon charge versus voltage curve,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-104, no. 3, pp. 655–662, 1985, doi: 10.1109/TPAS.1985.319001.
  • [14] G. L. Kusic, “Including corona effects for travelling waves on transmission lines,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-103, no. 12, pp. 3643-3650, 1984, doi: 10.1109/TPAS.1984.318417.
  • [15] P. S. Maruvada, H. Menemenlis, and R. Malewski, “Corona characteristics of conductor bundles under impulse voltages,” IEEE Transactions on Power Apparatus and Systems, vol. 96, no. 1, pp. 102–115, 1977, doi: 10.1109/T-PAS.1977.32313.
  • [16] M. Al Tai, H. Elayyan, … D. G.-I. P., and undefined 1989, “The simulation of surge corona on transmission lines,” researchgate.net, 1989, doi: 10.1109/MPER.1989.4310638.
  • [17] J. He, X. Zhang, P. Yang, S. Chen, and R. Zeng, “Attenuation and deformation characteristics of lightning impulse corona traveling along bundled transmission lines,” Electric Power Systems Research, vol. 118, pp. 29-36, Jan. 2015, doi: 10.1016/J.EPSR.2014.07.020.
  • [18] T. Gallagher, I. D.-I. Proceedings-Generation, and undefined 2004, “Model of corona for an EMTP study of surge propagation along HV transmission lines,” ieeexplore.ieee.org, Accessed: Jan. 05, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/1262765/.
  • [19] J. Jasni, W. Fatinhamamah, and W. Ahmad, “The Importance of Corona Effect in Lightning Surge Propagation Studies Cite this paper.”
  • [20] R. J. Harrington and M. Afghahi, “Effect of corona on surges on polyphase transmission lines,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-102, no. 7, pp. 2294-2299, 1983, doi: 10.1109/TPAS.1983.318153.
  • [21] C. A. Nucci, S. Guerrieri, M. T. Correia De Barros, and F. Rachidi, “Influence of corona on the voltages induced by nearby lightning on overhead distribution lines,” IEEE Transactions on Power Delivery, vol. 15, no. 4, pp. 1265-1273, Oct. 2000, doi: 10.1109/61.891513.
  • [22] J. Wang and X. Wang, “Lightning transient simulation of transmission lines considering the effects of frequency dependent and impulse corona,” 2011 International Conference on Electrical and Control Engineering, ICECE 2011 - Proceedings, pp. 696-699, 2011, doi: 10.1109/ICECENG.2011.6057598.
  • [23] A. Zangeneh, A. Gholami, and V. Zamani, “A new method for calculation of corona inception voltage in stranded conductors of overhead transmission lines,” First International Power and Energy Conference, (PECon 2006) Proceedings, pp. 571–574, 2006, doi: 10.1109/PECON.2006.346716.
  • [24] N. Harid and R. T. Waters, “Statistical study of impulse corona inception parameters on line conductors,” IEE Proceedings A: Physical Science. Measurement and Instrumentation. Management and Education. Reviews, vol. 138, no. 3, pp. 161–168, 1991, doi: 10.1049/IPA-3.1991.0022/CITE/REFWORKS.
  • [25] S. Sekar, “An investigation of pulsed corona in cylindrical and wire-plate geometries,” Journal of Electrostatics, vol. 13, no. 1, pp. 29-41, Aug. 1982, doi: 10.1016/0304-3886(82)90033-X.
  • [26] M. Afghahi, R. H.-I. P. C-Generation, and undefined 1983, “Charge model for studying corona during surges on overhead transmission lines,” ieeexplore.ieee.org, Accessed: Jan. 05, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/4643568/.
  • [27] D. D. and A. B. Haddouche Ali, “Protection of the Transformation Stations Against the Atmospheric Overvoltages,” Journal of Engineering and Applied Sciences, 2: 199-202, 2007. .
  • [28] “Harid, N., R. T. Waters, and D. M. German. "Characteristics of corona discharge under oscillatory impulse voltages,” Proceedings of the Universities Power Engineering Conference, 1990. .
  • [29] GARY and C., “Attenuation of travelling waves caused by Corona,” CIGRE Report 22-13, 1978, Accessed: Jan. 05, 2022. [Online]. Available: https://ci.nii.ac.jp/naid/10006532437
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ef6b1ca-47f9-4003-870b-119230a31d44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.