PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of wind effects on buildings using design codes and numerical wind tunnel tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena wpływu wiatru na budynki z wykorzystaniem norm projektowych i testów numerycznych w metodzie tunelu aerodynamicznego
Języki publikacji
EN
Abstrakty
EN
The evaluation of wind effect on the regular shape and simple diaphragm buildings and structures due to wind load has been calculated by several international codes and standards where wind gust nature and dynamic effect could not capture. Bangladesh National Building Code (BNBC) provides the tools for engineers to calculate the wind pressures for the design of a regular-shaped structure with a height to width ratio of less than 5.0, a simple diaphragm, and no unusual geometrical irregularity. If these conditions do not satisfy a wind tunnel testing is required. In this study, a comparative study between two codes in Bangladesh (BNBC-2006 and BNBC-2020), and wind tunnel test results are conducted. An investigation is carried out on four typical buildings with variable heights located within Dhaka, Bangladesh. A computational fluid dynamics (CFD) program RWIND is used to calculate the wind loads on buildings and are compared with those obtained by Bangladesh National Building Codes. Storey shear of four different building models is compared. Between BNBC-2006 and BNBC-2020, there is up to a 53% difference in storey shear. Whereas, up to 30% variation in storey shear is observed between the numerical wind tunnel test data and the data calculated using the BNBC-2020 equations. Finally, this study will help in improving BNBC code provisions for wind load calculations.
PL
Kalkulację wpływu wiatru na budynki i budowle o regularnych kształtach i prostych konstrukcjach pod obciążeniem wiatrem przedstawiono w kilku normach międzynarodowych, w których jednak nie uwzględniono charakteru podmuchów wiatru i efektu dynamicznego. Bangladeska Krajowa Norma Budowlana (BNBC) zapewnia inżynierom narzędzia do obliczania ciśnienia wiatru przy projektowaniu konstrukcji o regularnym kształcie, o stosunku wysokości do szerokości mniejszym niż 5,0, prostej konstrukcji oraz bez nietypowych nieregularności geometrycznych. Jeśli warunki te nie są spełnione, wymagane jest przeprowadzenie testów w tunelu aerodynamicznym. W niniejszym opracowaniu przeprowadzono badanie porównawcze między dwiema normami obowiązującymi w Bangladeszu (BNBC-2006 i BNBC-2020) oraz wynikami testów w tunelu aerodynamicznym. Badanie przeprowadzono na czterech typowych budynkach o różnej wysokości zlokalizowanych w Dhace w Bangladeszu. Program RWIND do obliczeń i symulacji dynamiki płynów (CFD) został wykorzystany do obliczenia obciążeń wiatrem na budynkach i porównany z wynikami uzyskanymi według bangladeskich norm budowlanych. Porównano ścinanie kondygnacji czterech różnych modeli budynków. W tym względzie różnice pomiędzy BNBC-2006 i BNBC-2020 wynoszą do 53%. Natomiast między danymi z numerycznego testu w tunelu aerodynamicznym a danymi obliczonymi przy użyciu równań BNBC-2020 zaobserwowano do 30% różnic w odniesieniu do ścinania kondygnacji. Badanie to pomoże też ulepszyć przepisy norm BNBC dotyczące obliczeń obciążenia wiatrem.
Rocznik
Strony
73--81
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Bangladesh Army International University of Science and Technology (BAIUST)
  • Military Institute of Science and Technology (MIST)
autor
  • European University of Bangladesh (EUB)
Bibliografia
  • [1] Abdi D.S., Bitsuamlak, G.T., (2016), Wind flow simulations in idealized and real built environments with models of various level of complexity. Wind and Structures, 22(4), 503-524. https://doi.org/10.12989/was.2016.22.4.503.
  • [2] Abdullah F., Islam Z., Asif M.A.T., Ali S., (2021), A Comparative Study of Lateral Load Analysis Considering Two BNBC Codes Using ETABS Software, American Journal of Civil Engineering, 9(4), 118-126, https://doi.org/10.11648/j.ajce.20210904.13.
  • [3] Allegrini J., Dorer V., Carmeliet J., (2014), Buoyant flows in street canyons: Validation of CFD simulations with wind tunnel measurements, Building and Environment, 72, 63-74. https://doi.org/10.1016/j.buildenv.2013.10.021.
  • [4] ASCE/SEI 7-10. (2010), Minimum design loads for buildings and other structures. In American Society of Civil Engineers.
  • [5] Bangladesh National Building Code, BNBC, 2006, Housing and Building Research Institute and Bangladesh Standard and Testing Institute, Bangladesh.
  • [6] Bangladesh National Building Code, BNBC, 2020, Housing and Building Research Institute and Bangladesh Standard and Testing Institute, Bangladesh.
  • [7] Barlow J.B., Rae W.H., Pope A., (1999), Low-speed wind tunnel testing. John Wiley & Sons.
  • [8] Bendjebbas H., Abdellah-ElHadj A., Abbas M., (2016), Full-scale, wind tunnel and CFD analysis methods of wind loads on heliostats: A review. Renewable and Sustainable Energy Reviews, 54, 452-472, https://doi.org/10.1016/j.rser.2015.10.031.
  • [9] Braun A.L., Awruch A.M., (2009), Aerodynamic and aeroelastic analyses on the CAARC standard tall building model using numerical simulation, Computers & Structures, 87(9-10), 564-581, https://doi.org/10.1016/j.compstruc.2009.02.002.
  • [10] Charisi S., Thiis T.K., Aurlien T., (2019), Full-scale measurements of wind-pressure coefficients in twin medium-rise buildings, Buildings, 9(3), 63, https://doi.org/10.3390/buildings9030063.
  • [11] Computers and Structures Inc., (2022). ETABS Integrated Software for Structural Analysis and Design. [Online] Available: https://www.csiamerica.com/products/etabs. [10 January 2022].
  • [12] Costola D., Blocken B., Hensen J.L.M., (2009), Overview of pressure coefficient data in building energy simulation and airflow network programs, Building and Environment, 44(10), 2027-2036, https://doi.org/10.1016/j.buildenv.2009.02.006.
  • [13] Dlubal Software GmbH, (2022), RWIND Simulation, Wind Simulation (Wind Tunnel), [Online] Available: https://www.dlubal.com/en/products/stand-alone-structural-analysis-software/rwind-simulation. [6 March 2022].
  • [14] Douvi C.E., Tsavalos I.A., Margaris P.D., (2012), Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil. Journal of Mechanical Engineering Research, 4(3), 100-111. https://doi.org/10.5897/jmer11.074.
  • [15] El-Behery S.M., Hamed M.H., (2011), A comparative study of turbulence models performance for separating flow in a planar asymmetric diffuser. Computers & Fluids, 44(1), 248-257, https://doi.org/10.1016/j.compfluid.2011.01.009.
  • [16] Flay R.G., Carpenter P., Revell, M., Cenek, P., Turner, R., King, A., (2013), Full-scale wind engineering measurements in New Zealand, In The 8th Asia-Pacific conference on wind engineering, (pp. 10-14), https://doi.org/10.3850/978-981-07-8012-8_key-09.
  • [17] Fouad N.S., Mahmoud G.H., Nasr N.E., (2018), Comparative study of international codes wind loads and CFD results for low rise buildings. Alexandria Engineering Journal, 57(4), 3623-3639, https://doi.org/10.1016/j.aej.2017.11.023
  • [18] Hasan M., Debnath S., Akther A., (2022), Comparative Study of Lateral Loads and Its Cost Effect on RC Moment Frame and Wall-frame Building According to BNBC 2020 in Different Zones of Bangladesh.
  • [19] Irtaza H., Beale R.G., Godley M.H.R., Jameel A., (2013), Comparison of wind pressure measurements on Silsoe experimental building from full-scale observation, wind-tunnel experiments and various CFD techniques. International Journal of Engineering, Science and Technology, 5(1), 28-41, https://doi.org/10.4314/ijest.v5i1.3.
  • [20] Juretić F., Kozmar H., (2013), Computational modeling of the neutrally stratified atmospheric boundary layer flow using the standard k–ε turbulence model, Journal of Wind Engineering and Industrial Aerodynamics, 115, 112-120, https://doi.org/10.1016/j.jweia.2013.01.011.
  • [21] Liu Z., Chen J., Xia Y., Zheng Y., (2021), Automatic sizing functions for unstructured mesh generation revisited. Engineering Computations, https://doi.org/10.1108/ec-12-2020-0700.
  • [22] Tan H., Pillai K.M., (2009), Finite element implementation of stress-jump and stress-continuity conditions at porous-medium, clear-fluid interface. Computers & Fluids, 38(6), 1118-1131, https://doi.org/10.1016/j.compfluid.2008.11.006.
  • [23] Vino G., Watkins S., Mousley P., Watmuff J., Prasad S., (2005), Flow structures in the near-wake of the Ahmed model. Journal of Fluids and Structures, 20(5), 673-695, https://doi.org/10.1016/j.jfluidstructs.2005.03.006.
Uwagi
The authors would like to thank the Department of Civil Engineering of the Military Institute of Science and Technology for its support.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ef5e02d-43bd-412f-957a-51fceb54dff3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.