PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Solution of Fractional Neutron Point Kinetics Model in Nuclear Reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents results concerning solutions of the fractional neutron point kinetics model for a nuclear reactor. Proposed model consists of a bilinear system of fractional and ordinary differential equations. Three methods to solve the model are presented and compared. The first one entails application of discrete Grünwald-Letnikov definition of the fractional derivative in the model. Second involves building an analog scheme in the FOMCON Toolbox in MATLAB environment. Third is the method proposed by Edwards. The impact of selected parameters on the model’s response was examined. The results for typical input were discussed and compared.
Rocznik
Strony
129--154
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wzory
Twórcy
autor
  • Faculty of Electrical and Control Engineering, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Faculty of Electrical and Control Engineering, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Faculty of Electrical and Control Engineering, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • [1] G. Ackermann: Operation of Nuclear Reactors. WNT, 1987, (in Polish).
  • [2] H. Anglart: Nuclear Reactor Dynamics and stability. Institute of Heat Engineering, Warsaw University of Technology, 2013, (in Polish).
  • [3] G. Baum and K. Duzinkiewicz: Simulation model of 1D dynamic reactor WWER-440. Technical report. Electric Power and Control Engineering Institute, Gdansk University of Technology, 1989, (in Polish)
  • [4] R. Caponetto, G. Dongola, L. Fortuna and I. Petrás: Fractional order systems. Modeling and Control Applications. World Scientific Series of Nonlinear Science, A(72), 2010.
  • [5] J. J. Duderstadt and L. J. Hamilton: Nuclear Reactor Analysis. JohnWiley & Sons, New York, 1976.
  • [6] K. Duzinkiewicz, G. Baum and A. Michalak: Simulation model of basic dynamic processes in nuclear power plant WWER based on model with lumped parameters. Technical report. Electric Power and Control Engineering Institute, Gdansk University of Technology, 1989, (in Polish).
  • [7] J. T. Edwards, N. J. Ford and A. CH. Simpson: The numerical solution of linear multi-term fractional differential equations. J. of Computational and Applied Mathematics, 148(2), (2002), 401-418.
  • [8] G. Espinosa-Paredes, M.-A. Polo-Labarrios, E.-G Espinosamartinez and E. Del Valle-Gallegos: Fractional neutron point kinetics equations for nuclear reactor dynamics. Annals of Nuclear Energy, 38(2-3), (2011), 307-330.
  • [9] H. Jafari and V. Daftardar-Gejji: Solving system of nonlinear fractional differential equations using Adomian decomposition. J. of Computational and Applied Mathematics, 196(2), (2006), 644-651.
  • [10] M. Kinard and K. E. J. Allen: Efficient numerical solution of the point kinetics equations in nuclear reactor dynamics. Annals of Nuclear Energy, 31 (2004), 1039-1051.
  • [11] T. K. Nowak, K. Duzinkiewicz and R. Piotrowski: Fractional neutron point kinetics equations for nuclear reactor dynamics - numerical investigations. Annals of Nuclear Energy, in review.
  • [12] I. Petrás: Engineering Education and Research Using MATLAB. InTech, Rijeka, 2011.
  • [13] I. Petrás: Fractional-Order Nonlinear Systems. Modelling, Analysis and Simulation. Springer, New York, 2011.
  • [14] I. Podlubny: Fractional Differential Equations. Academic Press, San Diego, 1999.
  • [15] M. A. Schultz: Control of Nuclear Reactors and Power Plants. McGew-Hill, New York, 1961.
  • [16] A. Tepjakov, E. Petlenkov and J. Belikov: FOMCON: a MATLAB toolbox for fractional-order system identification and control. J. of Microelectronics and Computer Science, 2(2), (2011), 51-62.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ef3958d-6ba9-4c00-99d3-97b48fa6d211
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.