PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microscopic Evaluation of Concrete Samples from Manholes Exposed on Hydrogen Sulphide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The field test of the sewer system in a rural area was made. The results from two different pressure-gravity systems localized in two settlements were compared. The investigated sewer system operates in serial connection; the sewage from one settlement is pumped to the expansion well in the next one. In both systems, the high concentration of hydrogen sulfide, exceeding 200 ppm, and visible concrete wells corrosion effects were recorded. The samples of corroded concrete from the internal walls of the chosen wells were collected. The results of an electron microscope with the EDS attachment (Energy dispersive X-ray Spectroscopy) analysis showed a significant sulfur content in a concrete surface layer from 11.2% to 64.2% for the first system and from 7.53% to 42.9% for the second one. The exposure of concrete to high concentrations of hydrogen sulfide and relatively high content of sulfur on the surface of concrete might be a reason for hydrogen sulfide corrosion of concrete in the investigated systems.
Rocznik
Strony
188--194
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • EDP Department of Sanitary Engineering West Pomeranian University of Technology in Szczecin, al. Piastów 50, 70-311 Szczecin, Poland
  • EDP Department of Sanitary Engineering West Pomeranian University of Technology in Szczecin, al. Piastów 50, 70-311 Szczecin, Poland
autor
  • EDP Department of Sanitary Engineering West Pomeranian University of Technology in Szczecin, al. Piastów 50, 70-311 Szczecin, Poland
  • EDP Department of Sanitary Engineering West Pomeranian University of Technology in Szczecin, al. Piastów 50, 70-311 Szczecin, Poland
  • EDP Department of Building Physics and Building Materials West Pomeranian University of Technology in Szczecin, al. Piastów 50, 70-311 Szczecin, Poland
  • EDP Department of Sanitary Engineering West Pomeranian University of Technology in Szczecin, al. Piastów 50, 70-311 Szczecin, Poland
Bibliografia
  • 1. Ayoub, George, N Azar, M El Fadel, and B Hamad. 2004. Assessment of hydrogen sulphide corrosion of cementitious sewer pipes: A case study. Urban Water Journal, no. 1: 39–53.
  • 2. Bertran de Lis, F, E Saracevic, and N Matsche. 2007. Control of sulphide problems in pressure sewers. Novatech, 965–72.
  • 3. Bogusławski, B., A. Głowacka, and T. Rucińska. 2019. Microscopic evaluation of manholes in selected sewerage pressure system. Civil and Environmental Engineering, no. 29: 31–40.
  • 4. Bowker, R.P.G., J.M. Smith, and N.A. Webster. 1985. Odor and corrosion control i sanitary sewerage systems and treatment plants. Design Manual. U.S. Environmental Protection Agency.
  • 5. Dąbrowski, W. 2013. Nieporozumienia dotyczące korozji siarczanowej kanałów. Instal, no. 1: 33–36.
  • 6. DIN EN 1671 Druckentwässerungssysteme Außerhalb von Gebäuden.
  • 7. Głowacka, Anna, and Bartosz Bogusławski. 2018. Badanie skuteczności napowietrzania ścieków w wybranych systemach kanalizacji ciśnieniowej przy zastosowaniu aplikatora powietrza typu Atol-Oxy. Instal, no. 10 (399): 33–37.
  • 8. Guangming, Jiang, Sun Jing, Sharma Keshab, and Yuan Zhingo. 2015. Corrosion and odor management in sewer systems. Current Opinion in Biotechnology, no. 33: 192–97.
  • 9. Hewayde, Esam, Moncef Nehdi, Erez Allouche, and G Nakhla. 2006. Effect of geopolymer cement on microstructure, compressive strength and sulphuric acid resistance of concrete. Magazine of Concrete Research, 58 (5): 321–31.
  • 10. Hydrogen Sulfide Corrosion in Wastewater Collection and Treatment Systems. 1991. Technical Report. Washington: U.S. Environmental Protection Agency, Office of Water (WH-595).
  • 11. Mori, T, T Nonaka, K Tazaki, M Koga, Y Hikosaka, and S Noda. 1992. Interactions of nutrients, moisture and PH on microbial corrosion of concrete sewer pipes. Water Research 26 (1): 29–37.
  • 12. Norsker, Niels, Per Nielsen, and Thorkild HvitvedJacobsen. 1995. Influence of oxygen on biofilm growth and potential sulfate reduction in gravity sewer biofilm. Water Science and Technology 31 (7): 159–67.
  • 13. O’Connell, M, C McNally, and M.G. Richardson. 2010. Biochemical attack on concrete in wastewater applications: A state of the art review. Cement and Conrete Composites, no. 32: 479–85.
  • 14. PN-EN 1671:2001. Zewnętrzne systemy kanalizacji ciśnieniowej. 2001.
  • 15. Roberts, DJ, D Nica, G Zuo, and JL Davis. 2002. Quantifying microbially induced deterioration of concrete: Initial studies. International Biodeterioration and Biodegradation 49 (4): 227–34.
  • 16. Stachowiak, M., M. Troszczyńska, and Z.Dymaczewski. 2017. Przeciwdziałanie uciążliwości odorowej w systemach kanalizacji grawitacyjnotłocznej. Technologia Wody, no. 6: 38–45.
  • 17. Tazawa, EI, T Morianga, and K Kawai. 1994. Deterioration of concrete derived from metabolites of microorganisms. 1087–97. Nice, France.
  • 18. Wells, Tony, Robert Melchers, and Phil Bond. 2009. Factors Involved in the Long Term Corrosion of Concrete Sewers.
  • 19. Worona, J. 2012. Śmierdzi w kanale. zagniwanie ścieków w kanalizacji tłocznej. Ochrona Środowiska, no. 5.
  • 20. Yamanaka, T, I Aso, S Togashi, M Tanigawa, K Shoji, and T Watanabe. 2002. Corrosion by bacteria of in sewerage systems and inhibitory effects of formates on their growth. Water Research 36 (10): 2632–42.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ef389e8-2eee-48ec-b149-e7d2fc0cfbd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.