Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study examines the effect of incorporating single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) into carbon fiber reinforced polymers (CFRPs) based on Elium® thermoplastic acrylic resin and investigates the relationship between the studied properties. SWCNTs exhibited better dispersion in the matrix, which leads to better electrical conductivity (2.72 ± 0.34 S/m) and impact resistance (154 ± 14.6 kJ/m²) compared to MWCNTs. Microstructural analysis revealed a defect-free architecture of the SWCNT-modified laminates, while the MWCNT laminates showed small voids and agglomerates. The increased dispersion and interconnectivity of the SWCNTs contribute to an EMI shielding efficiency of 24.6 dB, a 30% improvement over the unmodified samples. These findings highlight the potential of SWCNTs to improve the multifunctional properties of thermoplastic CFRPs, including mechanical strength, electrical performance and EMI shielding capability, making them highly suitable for advanced aerospace, electronics and power applications. Moreover, the recyclability and lightweight nature of the Elium® resin matrix make these composites environmentally friendly and an alternative to traditional materials in a variety of industrial contexts.
Czasopismo
Rocznik
Tom
Strony
67--74
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska St., 02-507 Warsaw, Poland
autor
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, 10 Uniwersytetu Poznańskiego St., 61-614 Poznań, Poland
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska St., 02-507 Warsaw, Poland
autor
- Faculty of Electrical Engineering, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
autor
- Faculty of Electrical Engineering, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska St., 02-507 Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska St., 02-507 Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska St., 02-507 Warsaw, Poland
autor
- Faculty of Electrical Engineering, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
autor
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, 10 Uniwersytetu Poznańskiego St., 61-614 Poznań, Poland
Bibliografia
- [1] Nallabothula H., Bhattacharjee Y., Samantara L., Bose S., Processing-Mediated Different States of Dispersion of Multiwalled Carbon Nanotubes in PDMS Nanocomposites Influence EMI Shielding Perfor mance, ACS Omega 2019 4 (1), 1781-1790, DOI: 10.1021/acsomega.8b02920.
- [2] Jelmy E.J., Ramakrishnan S., Kothurkar N.K. (2016), EMI shielding and microwave absorption behavior of Au-MWCNT/polyaniline nanocomposites. Polym. Adv. Technol., 27: 1246–1257. DOI: 10.1002/pat.3790.
- [3] Wallin M.K.E.B., Marve T., Hakansson P.K., Modern wireless telecommunication technologies and their electromagnetic compatibility with life-supporting equipment. Anesth Analg. 2005 Nov;101(5):1393 1400. DOI: 10.1213/01.ANE.0000180216.83554.00. PMID: 16244000.
- [4] Jung M., Lee Y., Hong S.G., Moon J., Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE), Cement and Concrete Research,Volume 131, 2020, 106017, ISSN 0008-8846, https://doi.org/10.1016/ j.cemconres.2020.106017.
- [5] Ryu S.H., Han Y.K., Kwon S.K., Kim T., Jung B.M., Lee S.B., Park B., Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite, Chemical Engineering Journal, Volume 428, 2022, m131167, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2021.131167.
- [6] T. Chakraborty, S. Dutta, A.S. Mahapatra, K. Das, S. Das, A. Roy, M. Mukherjee, S. Das, S. Sutradhar, Superior EMI shielding effectiveness of light weight and stretchable X-type hexaferrite-poly(vinylidene flu oride) laminated nanocomposite materials, Journal of Magnetism and Magnetic Materials, Volume 570, 2023, 170508, ISSN 0304-8853, https://doi.org/10.1016/j.jmmm.2023.170508.
- [7] H. Zhu, K. Fu, B. Yang, Y. Li, Nickel-coated nylon sandwich film for combination of lightning strike protection and electromagnetic interference shielding of CFRP composite, Composites Science and Technology, Volume 207, 2021, 108675, ISSN 0266-3538, https://doi.org/10.1016/j.compscitech.2021.108675.
- [8] K. Morioka, Y. Tomita, K. Takigawa, High-temperature fracture properties of CFRP composite for aerospace applications, Materials Science and Engineering: A, Volumes 319-321, 2001, Pages 675-678, ISSN 0921-5093, https://doi.org/10.1016/S0921-5093(01)01000-0.
- [9] J.J.M. Machado, P.D.P. Nunes, E.A.S. Marques, Lucas F.M. da Silva, Adhesive joints using aluminium and CFRP substrates tested at low and high temperatures under quasi-static and impact conditions for the auto motive industry, Composites Part B: Engineering, Volume 158, 2019, Pages 102-116, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2018.09.067
- [10] L.W. Zhang, A.O. Sojobi, K.M. Liew, Sustainable CFRP-reinforced recycled concrete for cleaner eco friendly construction, Journal of Cleaner Production, Volume 233, 2019, Pages 56-75, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2019.06.025.
- [11] J. Zhang, G. Lin, U. Vaidya, H. Wang, Past, present and future prospective of global carbon fibre composite de velopments and applications, Composites Part B: Engineering, Volume 250, 2023, 110463, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2022.110463.
- [12] X. Wang, Z. Zhang, P. Zhuge, Transient analysis of a novel full submersible floating offshore wind turbine with CFRP tendons, Ocean Engineering, Volume 266, Part 1, 2022, 112686, ISSN 0029-8018, https://doi.org/10.1016/j.oceaneng.2022.112686.
- [13] I.M. Alarifi, Investigation the conductivity of carbon fi ber composites focusing on measurement techniques under dynamic and static loads, Journal of Materials Research and Technology, Volume 8, Issue 5, 2019, Pages 4863-4893, ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2019.08.019.
- [14] Mikinka E., Siwak M., Recent advances in electromagnetic interference shielding properties of carbon-fibre reinforced polymer composites – a topical review. J Mater Sci: Mater Electron 32, 24585-24643 (2021). https://doi.org/10.1007/s10854-021-06900-8
- [15] Geetha S., Satheesh Kumar K.K., Rao C.R.K., Vijayan M., Trivedi D.C. (2009), EMI shielding: Meth ods and materials – A review. J. Appl. Polym. Sci., 112: 2073-2086, https://doi.org/10.1002/app.29812.
- [16] Yizhe Chen, Meng Yuan, Hui Wang, Ruichang Yu, Lin Hua, Progressive optimization on structural design and weight reduction of CFRP key components, International Journal of Lightweight Materials and Manufacture, Volume 6, Issue 1, 2023, Pages 59-71, ISSN 2588-8404, https://doi.org/10.1016/j.ijlmm.2022.07.001.
- [17] D.D.L Chung, Electromagnetic interference shielding effectiveness of carbon materials, Carbon, Volume 39, Issue 2, 2001, Pages 279-285, ISSN 0008-6223, https://doi.org/10.1016/S0008-6223(00)00184-6.
- [18] Daeik Jang, B.H. Choi, H.N. Yoon, Beomjoo Yang, H.K. Lee, Improved electromagnetic wave shielding capability of carbonyl iron powder-embedded light weight CFRP composites, Composite Structures, Vol ume 286, 2022, 115326, ISSN 0263-8223.
- [19] Cheon J., Kim M., Impact resistance and interlaminar shear strength enhancement of carbon fiber reinforced thermoplastic composites by introducing MWCNT-anchored carbon fiber, Composites Part B: Engineering , Volume 217, 2021, 108872, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2021.108872.
- [20] Kostopoulos V., Baltopoulos A., Karapappas P., Vavouliotis A., Paipetis A., Impact and after-impact properties of carbon fibre reinforced composites en hanced with multi-wall carbon nanotubes, Composites Science and Technology, Volume 70, Issue 4,2010, Pages 553-563, ISSN 0266-3538, https://doi.org/10.1016/j.compscitech.2009.11.023.
- [21] H. Zhao, Z. Gao, D. Zhai, G. Zhao, Enhanced mechanical property of continuous carbon fiber/polyamide thermoplastic composites by combinational treatments of carbon fiber fabric, Composites Communications, Volume 38, 2023, 101508, ISSN 2452-2139, https://doi.org/10.1016/j.coco.2023.101508.
- [22] V.C. Gavali, P.R. Kubade, H.B. Kulkarni, Mechanical and Thermo-mechanical Properties of Carbon fiber Reinforced Thermoplastic Composite Fabricated Using Fused Deposition Modeling Method, Materials Today: Proceedings, Volume 22, Part 4, 2020, Pages 1786 1795, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2020.03.012.
- [23] M. El-Tahan, K. Galal, V.S. Hoa, New thermoplastic CFRP bendable rebars for reinforcing structural con crete elements, Composites Part B: Engineering, Vol ume 45, Issue 1, 2013, Pages 1207-1215, ISSN 1359 8368, https://doi.org/10.1016/j.compositesb.2012.09.025.
- [24] Gebhardt M., Manolakis I., Kalinka G., Deubener J., Chakraborty S., Meiners D., Re-use potential of carbon fibre fabric recovered from infusible thermoplastic CFRPs in 2nd generation thermosetting-matrix compo sites, Composites Communications, Volume 28, 2021, 100974, ISSN 2452-2139, https://doi.org/10.1016/j.coco.2021.100974.
- [25] Yamamoto T., Makino Y., Uematsu K. Improved mechanical properties of PMMA composites: Dispersion, diffusion and surface adhesion of recycled carbon fiber fillers from CFRP with adsorbed particulate PMMA, Advanced Powder Technology, Volume 28, Issue 10, 2017, Pages 2774-2778, ISSN 0921-8831, https://doi.org/10.1016/j.apt.2017.08.003.
- [26] Waseem S. Khan, Eylem Asmatulu, Md. Nizam Uddin, Ramazan Asmatulu, 8 - Recycling and reusing of ther moplastic and thermoset composites, Editor(s): Waseem S. Khan, Eylem Asmatulu, Md. Nizam Uddin, Ramazan Asmatulu, Recycling and Reusing of Engineering Materials, Elsevier, 2022, Pages 141-161, ISBN 9780128224618, https://doi.org/10.1016/B978 0-12-822461-8.00001-2.
- [27] Wang Y., Wang X., Cao X., Gong S., Xie Z., Li T., Wu C., Zhu Z., Li Z., Effect of Nano-Scale Cu Particles on the Electrical Property of CNT/Polymer Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106325, https://doi.org/10.1016/j.compositesa.2021.106325.
- [28] Demski S., Dydek K., Bartnicka K., Majchrowicz K., Kozera R., Boczkowska A., Introduction of SWCNTs as a Method of Improvement of Electrical and Mechan ical Properties of CFRPs Based on Thermoplastic Acrylic Resin. Polymers 2023, 15, 506, https://doi.org/10.3390/polym15030506.
- [29] Demski S., Brząkalski D., Gubernat M., Dydek K., Czaja P., Żochowski K., Kozera P., Krawczyk Z., Sztorch B., Przekop R.E. et al., Nanocomposites Based on Thermoplastic Acrylic Resin with the Addition of Chemically Modified Multi-Walled Carbon Nanotubes. Polymers 2024, 16, 422, https://doi.org/10.3390/polym16030422.
- [30] Demircan Ö., Sufyan S., Basem A.M., Tensile and Charpy Impact Properties of CNTs Integrated PET/ Glass Fiber Thermoplastic Composites with Commingled Yarn. Res. Eng. Struct. Mater. 2022, http://dx.doi.org/10.17515/resm2022.442ma0606.
- [31] Sankaran S., Deshmukh K., Ahamed M.B., Khadheer Pasha S.K., Recent advances in electromagnetic inter ference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Composites Part A: Applied Science and Manufacturing 2018;114:49-71, https://doi.org/10.1016/j.compo sitesa.2018.08.006.
- [32] Yan X, Xiang L, He Q, Gu J, Dang J, Guo J et al., Electromagnetic Interference Shielding Polymer Nanocom posites. Multifunctional Nanocomposites for Energy and Environmental Applications, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2018, p. 567-601, https://doi.org/10.1002/9783527342501.ch19.
- [33] Koo C.M., Shahzad F., Kumar P., Yu S., Lee S.H., Hong J.P., Polymer-Based EMI Shielding Materials. [In:] Jaroszewski M., Thomas S., Rane A.V. (eds), Advanced Materials for Electromagnetic Shielding, Hobo ken, NJ, USA: John Wiley & Sons, Inc.; 2018, p. 177-217, https://doi.org/10.1002/9781119128625.ch9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1eefb6f3-a4ad-45b3-9634-fe1a3acfc97c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.