Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article is aimed on the possibility of fuzzy control of an experimental device that represents the simplified model of automobile steering booster. The main part of model consists of a graphical unit illustrating the control of speed and supporting torque. Based on the structure of fuzzy controller, various counts and configurations of fuzzy sets were defined, whereby the relevant results were achieved by their application on controlled system.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
40--50
Opis fizyczny
Bibliogr. 14 poz., fig., tab.
Twórcy
autor
- Technical University in Zvolen, Slovak Republic
autor
- Technical University in Zvolen, Slovak Republic
autor
- Technical University in Zvolen, Slovak Republic
autor
Bibliografia
- 1. Cardoso, F., et al. (1994). Fuzzy logic steering controller for a guided vehicle. Proceeding of the 7th Mediterranean Electrotechnical Conference, (Lisboa, Portugal), 711-714.
- 2. Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L. (2004). Ten years of genetic fuzy systems: current framework and new trends. Fuzzy sets and systems, 141, 5-31.
- 3. Esogbue, A. O., Song. Q. (2003). On Optimal Defuzzification and Learning Algorithms: Theory and Applications. Fuzzy Optimization and Decision Making, 2(4), 283-296.
- 4. Gacto, M. J., Alcalá, R., Herrera, F. (2011). Interpretability of linguistic fuzzy rule-bases systems: An overview of interpretability measures. Information Sciences, 181. 4340-4360.
- 5. Holiš, M. (2001). Using of Neural-Fuzzy Systems for Control of Continual Processes in Indeterminacy Conditions. Thesis, Slovak Technical University.
- 6. Jan, Z., Ždánský B. (2001). Automobiles 2: Gears. Brno, Czech Republic: Avid.
- 7. Kasabov, N. K. (1998). Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering. London, England: MIT Press.
- 8. Kecman, V. (2001). Learning and soft computing: support vector machines, neural networks and fuzzy logic models. London, England: MIT Press.
- 9. Koleda, P., Naščák, Ľ. (2009). Development and using of communication by means of Ethernet. In Perspective technology and materials for technical applications (pp. 116-121). Trnava, Inweld consulting.
- 10. Modrlák, O. (2004). Fuzzy Control and Regulation. Liberec, Czech Republic: TU Liberec.
- 11. Pivonka, P. (2003). Higher Forms of Control. Brno, Czech Republic: VUT.
- 12. Pradhan, S. K., Parhi, D. R., Panda, A. K. (2006). Neuro-fuzzy technique for navigation of multiple mobile robots. Fuzzy Optimization and Decision Making, 5(3), 255-288
- 13. Wang, D., Zeng, X., Keane, J. (2013). A simplified structure evolving method for Mamdami fuzzy system identification and its application to thigh-dimensional problems. Information Sciences, 220, 110-123.
- 14. Yager, R. R., Filev, D. P. (1994). Essentials of Fuzzy Modeling and Control. England: John Wiley & Sons.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1eead68d-5dea-4295-beef-41423a397083