Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The preparation of composite metal oxide to attain high efficiency in removing phenol from wastewater has a great concern. In the present study, the focus would be on adopting antimony-tin oxide coating onto graphite substrates instead of titanium; besides the effect of SbCl3 concentration on the SnO2-Sb2O3 composite would be examined. The performance of this composite electrode as the working electrode in the removal of phenol by sonoelectrochemical oxidation will be studied. The antimony-tin dioxide composite electrode was prepared by cathodic deposition with SnCl2 . 2H2O solution in a mixture of HNO3 and NaNO3, with different concentrations of SbCl3. The SnO2-Sb2O3 deposit layer’s structure and morphology were examined and the 4 g/l SbCl3 gave the more crystallized with nanoscale electrodeposition. The highest removal of phenol was 100% at a temperature of 30° C, with a current density (CD) of 25 mA/cm2 .
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
21--28
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wz.
Twórcy
autor
- Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
autor
- Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
autor
- Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
- 1. Lee, C.H., Lee, E.S., Lim, Y.K., Park, K.H., Park, H.D. & Lim, D.S. (2017). Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode. RSC Adv. 7(11), 6229–6235. DOI: 10.1039/c6ra26287b.
- 2. Mohammed, W.T. & Abdullah, S.M. (2008). Kinetic Study on Catalytic Wet Air Oxidation of Phenol in a Trickle Bed Reactor. Iraqi J. Chem. Petroleum Engin. 9(2), 17–23.
- 3. T. Alnasrawy, S.Y., Alkindi, G. & M. Albayati, T. (2021). Removal of high concentration phenol from aqueous solutions by electrochemical technique. Engin. Technol. J. 39(2A), 189–195. DOI: 10.30684/etj.v39i2a.1705.
- 4. Thwaini, H.H. & Salman, R.H. (2023). Phenol removal by electro-Fenton process using a 3D electrode with iron foam as particles and carbon fibre modified with graphene. J. Electrochem. Sci. Engin. 13(3), 537–551. DOI: 10.5599/jese.1806.
- 5. Ibrahim, H.M. & Salman, R.H. (2022). Study the Optimization of Petroleum Refinery Wastewater Treatment by Successive Electrocoagulation and Electro-oxidation Systems. Iraqi J. Chem. Petroleum Engin. 23(1), 31–41. DOI: 10.31699/IJCPE.2022.1.5.
- 6. Yang, W. (2019). Electrochemical advanced oxidation processes for emerging organic contaminants removal with graphene-based modified carbon felt electrode. Ph. D. Dissertation.
- 7. Mohammadi, S., Kargari, A., Sanaeepur, H., Abbassian, K., Najafi, A. & Mofarrah, E. (2015). Phenol removal from industrial wastewaters: a short review. Desalination Water Treat. 53(8), 2215–2234. DOI: 10.1080/19443994.2014.883327.
- 8. Naser, G.F., Mohammed, T.J. & Abbar, A.H. (2021). Treatment of Al-Muthanna Petroleum Refinery Wastewater by Electrocoagulation Using a Tubular batch Electrochemical Reactor. IOP Conf. Ser. Earth Environ. Sci. DOI: 10.1088/1755-1315/779/1/012094.
- 9. Thwaini, H.H. & Salman, R.H. (2023). Modification of Electro-Fenton Process with Granular Activated Carbon for Phenol Degradation – Optimization by Response Surface Methodology. J. Ecol. Engin. 24(9), 92–104. DOI: 10.12911/22998993/168411.
- 10. Steiner, M.G. (2017). Photocatalytic Decomposition of Phenol under Visible and UV Light Utilizing Titanium Dioxide Based Catalysts. New Hampshire.
- 11. Víctor-Ortega, M.D., Ochando-Pulido, J.M. & Martínez-Ferez, A. (2016). Performance and modeling of continuous ion exchange processes for phenols recovery from olive mill wastewater. Proc. Safety Environ. Protec. 100, 242–251. DOI: 10.1016/j.psep.2016.01.017.
- 12. Divya, N., Sreerag, A.V., Yadukrishna Joseph, T. & Soloman, P.A. (2021). A study on electrochemical oxidationof phenol for wastewater remediation. IOP Conf. Ser. Mater. Sci. Eng. 1114(1), 012073. DOI: 10.1088/1757-899x/1114/1/012073.
- 13. Adil Sabbar, H. (2019). Adsorption of Phenol from Aqueous Solution using Paper Waste. Iraqi J. Chem. Petrol. Engin. 20(1), 23–29. DOI: 10.31699/ijcpe.2019.1.4.
- 14. Ang, W.L., McHugh, P.J. & Symes, M.D. (2022). Sonoelectro-chemical processes for the degradation of persistent organic pollutants. Chem. Engin. J. 444, 136573. DOI: 10.1016/j.cej.2022.136573.
- 15. Thokchom, B., Pandit, A.B., Qiu, P., Park, B., Choi, J. & Khim, J. (2015). A review on sonoelectrochemical technology as an upcoming alternative for pollutant degradation. Ultrason Sonochem. 27, 210–234. DOI: 10.1016/j.ultsonch.2015.05.015.
- 16. Symes, D. (2011). Sonoelectrochemical (20 Khz) Production of Hydrogen from Aqueous Solutions. M. Sc. Thesis, The University of Birmingham.
- 17. Zhang, M., Zhang, Z., Liu, S., Peng, Y., Chen, J. & Yoo Ki, S. (2020). Ultrasound-assisted electrochemical treatment for phenolic wastewater. Ultrason Sonochem. DOI: 10.1016/j.ultsonch.2020.105058.
- 18. Yaqub, A. & Ajab, H. (2013). Applications of sonoelectrochemistry in wastewater treatment system. Rev. Chem. Engin. 29(2), 123–130. DOI: 10.1515/revce-2012-0017.
- 19. Kim, K., Cho, E., Thokchom, B., Cui, M., Jang, M. & Khim, J. (2015). Synergistic sonoelectrochemical removal of substituted phenols: Implications of ultrasonic parameters and physicochemical properties. Ultrason Sonochem. 24, 172–177. DOI: 10.1016/j.ultsonch.2014.11.004.
- 20. Salman, R.H. & Abbar, A.H. (2023). Optimization of a combined electrocoagulation-electro-oxidation process for the treatment of Al-Basra Majnoon Oil field wastewater: Adopting a new strategy. Chem. Engin. Processing - Process Intensific. DOI: 10.1016/j.cep.2022.109227.
- 21. Nikravesh, B., Shomalnasab, A., Nayyer, A., Aghababaei, N., Zarebi, R. & Ghanbari, F. (2020). UV/Chlorine process for dye degradation in aqueous solution: Mechanism, affecting factors and toxicity evaluation for textile wastewater. J. Environ. Chem. Eng. DOI: 10.1016/j.jece.2020.104244.
- 22. Santos, D., Lopes, A., Pacheco, M.J., Gomes, A. & Ciríaco, L. (2014). The Oxygen Evolution Reaction at Sn-Sb Oxide Anodes: Influence of the Oxide Preparation Mode. J. Electro-chem. Soc. 161(9), H564–H572. DOI: 10.1149/2.1031409jes.
- 23. Feng, Y.J. & Li, X.Y. (2003). Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res. 37(10), 2399–2407. DOI: 10.1016/S0043-1354(03)00026-5.
- 24. Benchettara, A., Sidoumou, M., Mehdaoui, R., Zarrouk, A. & Benchettara, A. (2019). Electrocatalytic oxidation of paraacetylaminophenol on a graphite electrode modified with iron oxides. Portugaliae Electrochimica Acta. 37(6), 383–391. DOI: 10.4152/pea.201906383.
- 25. Nader, H.J. (2022). Electro-Oxidation of Organic Pollutants in Petroleum Refineries Effluent. M. Sc. Thesis, Al-Nahrain University.
- 26. Abbas, R.N. & Abbas, A.S. (2022). Kinetics and Energetic Parameters Study of Phenol Removal from Aqueous Solution by Electro-Fenton Advanced Oxidation Using Modified Electrodes with PbO2 and Graphene. Iraqi J. Chem. Petrol. Engin. 23(2), 1–8. DOI: 10.31699/ijcpe.2022.2.1.
- 27. Lv, J., Feng, Y., Liu, J., Qu, Y. & Cui, F. (2013). Comparison of electrocatalytic characterization of boron-doped diamond and SnO2 electrodes. Appl. Surf. Sci. 283, 900–905. DOI: 10.1016/j.apsusc.2013.07.040.
- 28. Subba Rao, A.N. & Venkatarangaiah, V.T. (2014). Metal oxide-coated anodes in wastewater treatment. Environ. Sci. Pollut. Res. 21(5), 3197–3217. DOI: 10.1007/s11356-013-2313-6.
- 29. Zhu, K., Zhang, W., Wang, H. & Xiao, Z. (2008). Electro-catalytic degradation of phenol organics with SnO2-Sb2O3/Ti electrodes. Clean (Weinh). 36(1), 97–102. DOI: 10.1002/clen.200700037.
- 30. Massa, A., Hernández, S., Ansaloni, S., Castellino, M., Russo, N. & Fino, D. (2018). Enhanced electrochemical oxidation of phenol over manganese oxides under mild wet air oxidation conditions. Electrochim Acta. 273, 53–62. DOI: 10.1016/j.electacta.2018.03.178.
- 31. Santos, I.D. Gabriel, S.B. Afonso, J.C. & Dutra, A.J.B. (2011). Preparation and characterization of Ti/SnO2-Sb electrode by pechini’s method for phenol oxidation. Mater. Res. 14(3), 408–416.
- 32. Xu, L., Li, M. & Xu, W. (2015). Preparation and characterization of Ti/SnO2-Sb electrode with copper nanorods for AR 73 removal. Electrochim. Acta. 166, 64–72. DOI: 10.1016/j. electacta.2015.02.233.
- 33. Liu, J. & Feng, Y. (2009). Investigation on the electro-catalytic characteristics of SnO2 electrodes with nanocoating prepared by electrodeposition method. Sci. in China, Series E: Technol. Sci. 52(6), 1799–1803. DOI: 10.1007/s11431-009-0110-8.
- 34. Nsaif, H.J. & Majeed, N.S. (2024). Modified Graphite with Tin Oxide as a Promising Electrode for Reduction of Organic Pollutants from Wastewater by Sonoelectrochemical Oxidation. Ecol. Engin. Environ. Technol. 25(1), 307–320. DOI: 10.12912/27197050/175437.
- 35. Chang, S.T., Leu, I.C. & Hon, M.H. (2002). Preparation and characterization of nanostructured tin oxide films by electrochemical deposition. Electrochemical and Solid-State Letters. DOI: 10.1149/1.1485808.
- 36. Abbas, R.N. & Abbas, A.S. (2022). The Taguchi Approach in Studying and Optimizing the Electro-Fenton Oxidation to Reduce Organic Contaminants in Refinery Wastewater Using Novel Electrodes.
- 37. Ahmed, Y.A. & Salman R.H. (2023). Synthesis of Mn-Co-Ni Composite Electrode by Anodic and Cathodic Electrodeposition for Indirect Electro-oxidation of Phenol: Optimization of the Removal by Response Surface Methodology. Ecol. Engin. Environ. Technol. 24, 107–119. DOI: 10.12912/27197050/171626.
- 38. Kötz, R., Stucki, S., Carcer, B. (1991). Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2, anodes.
- 39. Zhang, X., Liang, H. & Gan, F. (2006). Novel Anion Exchange Method for Exact Antimony Doping Control of Stannic Oxide Nanocrystal Powder. J. Amer. Ceramic. Soc. 89(3), 792–798. DOI: 10.1111/j.1551-2916.2005.00793.x.
- 40. Yang, X., Zou, R., Huo, F., Cai, D. & Xiao, D. (2009). Preparation and characterization of Ti/SnO2-Sb2O3-Nb2O5/PbO2 thin film as electrode material for the degradation of phenol. J. Hazard Mater. 164(1), 367–373. DOI: 10.1016/j.jhazmat.2008.08.010.
- 41. Pu, Y., Zhao, F., Chen, Y., Lin, X., Yin, H. & Tang, X. (2023). Enhanced Electrocatalytic Oxidation of Phenol by SnO2-Sb2O3/GAC Particle Electrodes in a Three-Dimensional Electrochemical Oxidation System. Water (Switzerland). DOI: 10.3390/w15101844.
- 42. Khan, H., Yerramilli, A.S., D’Oliveira, A., Alford, T.L. Boffito, D.C. & Patience, G.S. (2020). Experimental methods in chemical engineering: X-ray diffraction spectroscopy—XRD. Canadian J. Chem. Engin. 98(6), 1255–1266. DOI: 10.1002/cjce.23747.
- 43. Vicent, F., Morallo´N,E. Quijada, C.L. Va´Zquez, J. Aldaz, A. & Cases, F. (1998). Characterization and stability of doped SnO2 anodes. J. Appl. Electrochem. 28(6), 607–612. DOI: 10.1023/A:1003250118996.
- 44. Ciríaco, L., Santos, D., Pacheco, M.J. & Lopes, A. (2011). Anodic oxidation of organic pollutants on a Ti/SnO2-Sb 2O4 anode. J. Appl. Electrochem. 41(5), 577–587. DOI: 10.1007/s10800-011-0266-3.
- 45. Li, M., Feng, C., Hu, W., Zhang, Z. & Sugiura, N. (2009). Electrochemical degradation of phenol using electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt. J. Hazard. Mater. 162(1), 455–462. DOI: 10.1016/j.jhazmat.2008.05.063.
- 46. Ren, Y., Wu, Z., Ondruschka, B., Braeutigam, P., Franke, M., Nehring, H. & Hampel, U. (2011). Oxidation of Phenol by Microbubble-Assisted Microelectrolysis. Chem. Eng. Technol. 34(5), 699–706. DOI: 10.1002/ceat.201000534.
- 47. Ren, Y.Z., Wu, Z.L., Franke, M., Braeutigam, P., Ondruschka, B., Comeskey, D.J. & King, P.M. (2013). Sonoelectrochemical degradation of phenol in aqueous solutions. Ultrason Sonochem. 20(2), 715–721.
- 48. Neppolian, B., Jung, H., Choi, H., Lee, J.H. & Kang, J.-W. (2002). Sonolytic degradation of methyl tert-butyl ether: the role of coupled fenton process and persulphate ion. Water Res. 36(19), 4699–4708. DOI: 10.1016/S0043-1354(02)00211-7.
- 49. Afsharnia, M., Biglari, H., Rasouli, S.S., Karimi, A. & Kianmehr, M. (2018). Sono-electrocoagulation of fresh leachate from municipal solid waste; Simultaneous applying of iron and copper electrodes. Int. J. Electrochem. Sci. 13(1), 472–484. DOI: 10.20964/2018.01.22.
- 50. Esclapez, M.D., Tudela, I., Díez-García, M.I., Sáez, V., Rehorek, A., Bonete, P. & González-García, J. (2012). Towards the complete dechlorination of chloroacetic acids in water by sonoelectrochemical methods: Effect of the anodic material on the degradation of trichloroacetic acid and its by-products. Chem. Engin. J. 197, 231–241. DOI: 10.1016/j.cej.2012.05.031.
- 51. Veitch, N.C. (2004). Horseradish peroxidase: A modern view of a classic enzyme. Phytochem. 65(3), 249–259. DOI: 10.1016/j.phytochem.2003.10.022.
- 52. Savic, S., Petrovic, S., Petronijevic, stud M. & Petronijevic, Z. (2017). pH and Temperature Influence on Phenol Removal from Water by Horseradish Peroxidase. Internat. Sci. J. “Mach. Technol. Mater.” (10), 494–496.
- 53. Abbas, Z.I. & Abbas, A.S. (2021). Optimization of the electro-fenton process for cod reduction from refinery wastewater. Environ. Eng. Manag. J. 19(11), 2029–2037. DOI: 10.30638/eemj.2020.192.
- 54. Ahmed, Y.A. & Salman, R.H. (2023). Simultaneous electrodeposition of multicomponent of Mn–Co–Ni oxides electrodes for phenol removal by anodic oxidation. Case Studies Chem. Environ. Engin. 8(10038). DOI: 10.1016/j.cscee.2023.100386.
- 55. Nurhayati, E., Juang, Y. & Huang, C. (2017). The kinetics, current efficiency, and power consumption of electrochemical dye decolorization by BD-NCD film electrode. AIP Conf Proc. DOI: 10.1063/1.4985519.
- 56. Abbas, R.N. (2022). Advanced Oxidation of Organic Pollutants in Refinery Wastewater Over Carbon Fiber Electrode. Ph.D. Thesis, University of Baghdad / College of Engineering.
- 57. Abbas, Z.N. & Abbar, A.H. (2020). Application of response surface methodology for optimization of phenol removal from a simulated wastewater using rotating tubular packed bed electrochemical reactor. Egypt J. Chem. 63(10), 3925–3936. DOI: 10.21608/EJCHEM.2020.26727.2547.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ee857b8-0856-4f5d-b056-2dfdb40f4a13