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Abstract

The paper presents a new method of surface topology reconstruction from a white light interferogram.  
The method is based on interferogram modelling by complex exponents (Prony method). The compatibility of 
white light interferogram and Prony models has already been proven. Effectiveness of the method was tested by 
modelling and examining reconstruction of tilted and spherical surfaces, and by estimating the reconstruction 
accuracy.
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1. Introduction

In many fields of science and technology appears a need of measuring surface parameters, 
such as the surface profile, roughness, etc. In recent years, white light interferometry (WLI) is of 
significant interest for the reconstruction of surface profile. The advantages of this technology 
include its non-intrusiveness, high resolution, and the possibility to examine step-like surfaces 
[1–6].

In contrast to conventional monochrome light interferometry, analysis of a white light 
interferogram for the surface topology reconstruction is more complicated. This is caused by an 
envelope effect influencing the signal intensity. Currently, a number of reconstruction methods 
have been developed, for example the method of envelope detection or determination of 
maximum intensity in the spatial domain, the phase-shifting method, or the Fourier transform 
in the frequency domain [7−11]. However, such methods are not effective in many cases, e.g. 
for surfaces with non-linear shapes [12, 13].

Thus, it is still an open question to develop new effective methods for the surface 
reconstruction, based on an interferometer image obtained by means of WLI. This paper 
describes a new interferometry method for the surface topology reconstruction, based on 
modelling of an interferogram with complex exponents, known as the Prony method. The study 
results indicate efficiency of the method and enable to determine its restrictions.

2. Physical principles of white light interferometry and mathematical model 
 of interferogram

An interference occurs as a result of superposition of two or more coherent light waves. In 
effect, the total wave is amplified or attenuated (the light and dark bands on the interferogram). 
Interferometers are optical instruments using the interference for measurement of geometrical 
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properties, including studies of the surface topology. Modern white light interferometers, such 
as Talysurf CCI 6000, provide measurement along the vertical axis with a resolution below 1 Å.

The principle of operation of an interferometer is explained in Fig. 1.

Fig. 1. A general design of interferometer.

The LS (light source) illuminates the BS (beam splitter), which leads to formation of two 
light beams: W1 and W2. The beams reflected from the reference mirror M and the examined 
surface S in BS are superposed and form an image of interference bands recorded by a CCD 
camera (Fig. 2). The maximum light intensity (light areas) is observed when the difference of 
optical paths W1 and W2 is equal to or is a multiple of the wavelength, while the inversely dark 
areas correspond to points where phases of waves W1 and W2 are opposite.

Figure 2 presents a fundamental difference between the images of interferograms of 
monochromatic light (Fig. 2b) and white light (Fig. 2c), obtained for a tilted step-like surface 
(Fig. 2a).

 

Fig. 2. a) A tilted step-like surface; b) interferograms for monochromatic light; c) white light.

The low white light correlation level causes decay of intensity of bands on image edges 
(Fig. 2c). Such a distinctive feature of WLI is on the one hand its advantage that enables 
clear reconstruction of complex step-like surfaces (in contrast to coherent monochromatic 
interferometry), but, on the other hand, due to the decline of band intensity, makes analysis of 
the interferogram more difficult [1].

a)

b) c)
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The basis for the surface topology reconstruction is a mathematical model of a white light 
interferogram. The graph in Fig. 2b presenting the change in light intensity along the horizontal 
interferogram can be described with the following expression [12]:
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where: I0 and IM – the constant component and amplitude of light intensity envelope; T – the 
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source; λ0 and Δλ – the middle wavelength and the width of spectral density of the white light 
source.

Equation (1) are a one-dimensional (1D) mathematical model of interferogram, combining 
the optical difference T of paths of beams reflected from the examined and reference surfaces 
with the pixel intensity I in each point c (column) of a selected line r (row) of the interferogram. 
The interferometric image (2D) is a set of such individual lines, i.e. the matrix of dimension 
R*C. Apart from the constant component of light intensity I0, the model contains two more 
elements: the envelope E(T) in a shape of the Gaussian function and the carrier C(T) in a form 
of the cosine function.

As shown by the (1), the desired informatic parameter T is at the same time an argument of 
both the envelope and the carrier. Since the measurement of such physical properties like the 
phase is relatively easier (in comparison to that of the intensity), the majority of reconstruction 
methods prefer the exact measurement of the informatic parameter T from the carrier C(T). 
The problem of the surface profile reconstruction is thus reduced to the measurement and 
accumulation of the instantaneous value of frequency fn of the interferogram carrier (1c), and 
the height of any point n on the surface can be obtained after re-scaling:

 
0
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⋅
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Equation (1) is non-linear and non-algebraic; hence, it has no analytical solution. The 
simplest method to obtain the desired value T is to determine the complete phase Ф(T) of the 
interferogram carrier. However, it requires simultaneous minimisation of the envelope effect on 
the accuracy of results.

So far, a number of methods have been developed that guarantee invariability of results 
regarding the envelope decay, e.g. on the basis of the Fourier or Hilbert transform. However, 
the reconstruction of non-linear surfaces with these methods is imprecise [13, 14]. Therefore, 
new methods of reconstruction are being sought for that would enable engineering accuracy 
and would be computationally efficient. Below we present the results of the development of 
a new approach to white light interferometry for the surface reconstruction, based on the Prony 
method.
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3. Theoretical basics of Prony method

Despite the fact that the Prony method was developed in the late 18th century [15], it 
currently has a number of variations [16−19]. It is a powerful tool for modelling sampled 
experimental data s = {s1, s2,...,sN}, using the sum p of complex exponents:
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where: s̃n – the signal estimate; ak and σk – the amplitude attenuation factor of the k-th exponent; 
fk and θk – the frequency and initial phase of the k-th component; n – the sample number; 
Δ – the sampling period of interferogram.

In the Prony model (3), for convenience of analysis and simpler determination of the 
parameters ak, σk, fk and φk, the time-independent element:

 kj
kk eah θ⋅=   (4)

and the time-dependent component:

 ( 2 ) .k kj f
kz e σ π+ ⋅∆=   (5) 

were isolated.
The model parameters ak, σk, fk and θk are selected in such a way, so as to obtain the mean 

square error of difference of analysed signal samples sn and its estimate s̃n (2) minimised:
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In the original Prony method for modelling signals with real values of samples, the order p 
of the model enables to determine p/2 parameters of complex exponents grouped in coupled 
pairs. This requires N = 2p samples.

Thus, the (3) can be written in a matrix form, based on the values (4) and (5):
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From the (7) two unknown values shall be determined, i.e. the matrix z and the vector h, and, 
in effect, the model parameters a, f, σ and θ.

One of the methods for determining the Prony model is derived from the theory of Digital 
Signal Processing and consists of the following steps [16, 20, 21]:
1. Creating a Toeplitz matrix from the samples of modelled signal:
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2. Solving the matrix equation in order to determine vector elements {Ai} that are the 
coefficients of characteristic polynomial:
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where: A0 = 1.
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3. Determining the unknown complex root zk from the characteristic (9):
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4. Calculating the time-dependent model parameters (frequency fk, attenuation σk) from the 
complex roots:
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5. Creating a Vandermonde matrix from the roots zk:
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6. Solving the matrix equation in order to determine the model parameters (amplitude ak and 
initial phases θk of cosine curves) that are time-independent:

 kk ha = , (13)
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Based on the parameters determined in such a way, the signal intensity can be replaced with 
its estimates. However, in order to reconstruct the surface profile it is sufficient to determine 
only one model parameter – a set of instantaneous frequencies – and then calculate the full 
phase of the carrier. Therefore, there is no need to calculate the three remaining parameters and 
reconstruct the interferogram with the set of complex exponents, which decreases demand on 
computational power of the used surface reconstruction method.

4. Adaptation of interferogram signal to Prony model

It is impossible to directly apply the Prony method to solve (1) to obtain the value of T, as 
the interferogram model (1) cannot be represented by the set of complex exponents. In order to 
check suitability of the Prony method, we will test the possibility of replacing the envelope in 
the interferogram function (Gaussian function) by co-sinusoidal windows.

A general form of the co-sinusoidal window family can be described by the following 
expression [22]:
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where: N – the number of signal samples; wi – the constant coefficients determined by the type 
of the window; L – the window order.

Increasing the order L decreases the approximation error for the Gaussian curve (see 
Table 1).
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Table 1. Dependence of the mean-square error of envelope approximation for a white light interferogram  
on the co-sinusoidal window order.

Surface type
Error of approximation (%) with window type

Hann (I) Blackman (II) Nuttall (III) Blackman-Harris (III)
Linear (T = n) 5.6 2.5 0.38 0.28
Non-linear (T =n2) 4.9 2.3 0.36 0.25

The satisfactory approximation results are obtained for the third-order window functions. 
Thus, the Gaussian envelope can be replaced with a Blackman-Harris window with the 
coefficients: w0 = 0.35875, w1 = – 0.48829, w2 = 0.14128, w3 = – 0.01168, and the mean square 
error below 0.3%:
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Finally, taking into account (16), the interferogram signal can be represented by the sum of 
cosines:
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where: α and β – the constant coefficients defined by the source light parameters (1b) and (1c).

5. Implementation of Prony method in the field of white light interferometry

Analysis of the fitted interferogram signal model (17) indicates that the dominant element 
for sections of envelope decay (outside the central section of the window) is the interferogram 
carrier. Therefore, the second-order Prony model is sufficient to determine its full phase. 
In order to create a Toeplitz matrix for the second-order model, the following values are needed: 
the current sample value n and three future samples of the interferogram signal:
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The Toeplitz matrix enables to determine the signal parameters at the moment n, and since n 
is defined in space from 1 to N, the signal synthesis can be accomplished in N-3 points.

For the Prony model defined in such a way (based on four signal samples), the interferogram 
signal parameters (including the instantaneous frequency) can be seen as constant values.

After solving the system of 2nd order equations, the coefficients А1 and А2 will be determined:
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of the characteristic equation: 2
1 2 1 2( ) ( ) 0.n nz A z A z z z z+ ⋅ + = − ⋅ − =
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The roots of the equation are determined using the formula:
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The instantaneous frequencies are calculated based on the (10): 
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it is possible to calculate the optical path difference in the individual surface points along the 
analysed single (1D) line of interferogram:

 [ ]0 0( ) 2 ,
2 2n nT T cumsum f
λ λ π
π π

= Φ = ∆  (21)

where: the cumsum function means the cumulative sum.
The geometric height of surface points is obtained on the basis of the relation: 

 
ν

n
n

T
h = , (22)

where: ν – the refractive index of the surrounding medium.
The reconstruction (2D) of the entire surface requires application of the Prony method for 

each line of the interferogram. Examining the properties and accuracy of the Prony method 
in the problem of surface topology reconstruction based on a white light interferogram was 
carried out on the examples of a linear tilted surface and a non-linear spherical surface.

6. Reconstruction of tilted surface and study of errors for various angles of inclination

The analysis of the Prony method accuracy was performed for simulated surfaces. For 
simulations a white light source with parameters: λ0 = 620 nm and Δλ = 51.6 nm was selected; 
thus, the factors α and β equalled to: α = 0.269∙106 m−1 and β = 20.3 106 m−1, respectively.

Figure 3a presents a flat 10 × 10 mm surface with inclination of:

tg φ = (Tmax – Tmin)/X = 5 μm/10 mm=5*10–4,

(Tmax i Tmin – the maximum and minimum values of optical path difference, X – the range of 
CCD camera along the horizontal axis), while Fig. 3b shows the image of its interferogram for 
the above source light parameters. For low values of the angle, the following relation holds: tg 
φ ≈ φ = 500 μrad.

  a)           b)

Fig. 3. a) A tilted surface; b) its corresponding interferogram.

In the modelling, application of a CCD camera with 1000 × 1000 px was assumed; therefore, 
the sampling period in space (lateral resolution) is 10 μm. Fig. 4 presents the curve of intensity 
function, i.e. a single interferogram line.
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Fig. 4. The representation of 1D line of WLI.

After application of the Prony method for the intensity signal, the surface profile was 
reconstructed. The accuracy of reconstruction evaluated by the total error can be calculated for 
each sample of the interferogram:

 %100
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and the mean square error:
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where: T(n) – the optical path difference for the n-th sample of simulated surface; and TR(n) – 
the value of optical path difference for the n-th sample of the interferogram, estimated by the 
Prony method.

Dependence of the total reconstruction error on the number of samples is presented in Fig. 5.

Fig. 5. The reconstruction error graph for a tilted surface profile.

As can be seen, the reconstruction error increases with the number of samples, but it does 
not exceed 0.2% for the inclination angle φ = 500 μrad of a linear surface.

Table 2 summarises the reconstruction errors (the maximum and mean square errors) for 
a tilted surface profile for various angles of inclination.

Table 2. Dependence of the mean square and maximum errors for the reconstruction  
of a tilted surface profile on the angle of its inclination.

φ, μrad 1000 500 200 100 50
σ, % 0.099 0.099 0.099 0.1 0.097

γmax, % 0.17 0.17 0.17 0.18 0.17

The studies presented a controversial impact of the inclination degree on the reconstruction 
error using the Prony method (φ > 100 μrad). We observe a negative effect of the envelope 
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(decline in the intensity at the beginning and end of the image) on the accuracy of determination 
of instantaneous frequencies. However, for angles below 0.05 μrad the reconstruction error 
drastically increased, due to improper conditioning of the Toeplitz matrix.

7. Reconstruction of spherical surface and studies of errors for various curvatures

The issue of application of the Prony method for the spherical surface reconstruction was 
studied with the assumptions described in the previous section. Fig. 6a presents a spherical 
surface with the height of the cap equal to 2.5 μm. The image of its interferogram is shown in 
Fig. 6b.
    a)       b)

Fig. 6. a) A spherical surface; b) its corresponding interferogram.

The interferogram intensity signal for a spherical surface (Fig. 6) along the central line is 
presented in Fig. 7. In contrast to the intensity signal for a tilted surface (Fig. 4), the signal 
presented in Fig. 7 contains a visible instability of frequency. This fact is confirmed by Fig. 8 
which presents changes of the frequency along the interferogram line.

Fig. 7. The representation of 1D line of WLI.

Fig. 8. Dependence of the interferogram instantaneous frequency  
on the number of samples.
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Figure 9a presents the results of spherical surface profile reconstruction by means of the 
Prony method (for a better resolution of the graph, only the central fragment is presented), 
whereas Fig. 9b presents the reconstruction error graph. In the centre, an increase of the 
reconstruction error is clearly visible. This is the result of the signal mismatching the second-
order Prony model. The more detailed analysis found positive values of the discriminant of 
characteristic equation in the range from 444 to 552, and thus no imaginary values of roots zk, 
which gives zero instantaneous frequencies in these points. This requires an increasing order of 
the Prony model, which, however, will be accompanied with the increase of its computational 
complexity.

     a)

    b)

Fig. 9. The results of spherical surface reconstruction: a) the shape of the profile of the simulated surface 
(curve T) and the reconstructed surface (curve TR); b) the reconstruction error graph.

Table 3 summarises the reconstruction errors (the maximum and mean square errors) 
for the spherical surface profile for various degrees of curvature estimated by the height of 
convexity.

Table 3. Dependence of the mean square and maximum errors for the reconstruction  
of a spherical surface profile on the degree of its curvature.

Tmax, μm 2.5 1 0.5 0.2 0.1
σ, % 0.95 1.6 3.0 8.8 19.4

γmax, % 2.0 4.1 7.6 18.3 34.6

Decreasing the height of convexity leads to relative widening of the middle part of intensity 
signal, where the 2nd order Prony method becomes unstable (the discriminant of characteristic 
equation has positive values), and hence the height of the reconstruction error for individual 
points of the examined spherical surface increases.
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8. Conclusions

The article presents a mathematical model for the signal intensity of a white light 
interferogram and describes the problem of surface topology reconstruction. It also shortly 
presents the theoretical background of the Prony method for modelling of digital signals with 
a linear set of complex exponents.

It has been confirmed that it is possible to reduce canonical model of WLI (1) to a Prony 
model (3) via approximation of the interferogram envelope of Gaussian shape using a co-
sinusoidal Blackman-Harris window function. The possibility of using the 2nd order 
Prony model for the surface topology reconstruction from a white light interferogram was 
justified.

The accuracy of the Prony method was tested on the example of reconstruction of tilted 
and spherical surfaces, showing an influence of the degree of inclination and curvature on the 
reconstruction accuracy.
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